{-# LANGUAGE TemplateHaskell, TypeOperators, MultiParamTypeClasses, FlexibleInstances, FlexibleContexts, UndecidableInstances #-} -------------------------------------------------------------------------------- -- | -- Module : Examples.Param.EvalAlgM -- Copyright : (c) 2011 Patrick Bahr, Tom Hvitved -- License : BSD3 -- Maintainer : Tom Hvitved -- Stability : experimental -- Portability : non-portable (GHC Extensions) -- -- Monadic Expression Evaluation without PHOAS -- -- The example illustrates how to use parametric compositional data types to -- implement a small expression language, with a sub language of values, and a -- monadic evaluation function mapping expressions to values. The lack for PHOAS -- means that -- unlike the example in 'Examples.Param.EvalM' -- a monadic -- algebra can be used. -- -------------------------------------------------------------------------------- module Examples.Param.EvalAlgM where import Data.Comp.Param import Data.Comp.Param.Show () import Data.Comp.Param.Ditraversable import Data.Comp.Param.Derive import Control.Monad (liftM) -- Signature for values and operators data Value a e = Const Int | Pair e e data Op a e = Add e e | Mult e e | Fst e | Snd e -- Signature for the simple expression language type Sig = Op :+: Value -- Derive boilerplate code using Template Haskell $(derive [makeDifunctor, makeDitraversable, makeEqD, makeShowD, smartConstructors] [''Value, ''Op]) -- Monadic term evaluation algebra class EvalM f v where evalAlgM :: AlgM Maybe f (Term v) $(derive [liftSum] [''EvalM]) -- Lift the monadic evaluation algebra to a monadic catamorphism evalM :: (Ditraversable f Maybe (Term v), EvalM f v) => Term f -> Maybe (Term v) evalM = cataM evalAlgM instance (Value :<: v) => EvalM Value v where evalAlgM (Const n) = return $ iConst n evalAlgM (Pair x y) = return $ iPair x y instance (Value :<: v) => EvalM Op v where evalAlgM (Add x y) = do n1 <- projC x n2 <- projC y return $ iConst $ n1 + n2 evalAlgM (Mult x y) = do n1 <- projC x n2 <- projC y return $ iConst $ n1 * n2 evalAlgM (Fst v) = liftM fst $ projP v evalAlgM (Snd v) = liftM snd $ projP v projC :: (Value :<: v) => Term v -> Maybe Int projC v = case project v of Just (Const n) -> return n _ -> Nothing projP :: (Value :<: v) => Term v -> Maybe (Term v, Term v) projP v = case project v of Just (Pair x y) -> return (x,y) _ -> Nothing -- Example: evalMEx = Just (iConst 5) evalMEx :: Maybe (Term Value) evalMEx = evalM ((iConst 1) `iAdd` (iConst 2 `iMult` iConst 2) :: Term Sig)