{-# LANGUAGE GADTs, Rank2Types, ScopedTypeVariables, TypeOperators, FlexibleContexts, CPP #-} -------------------------------------------------------------------------------- -- | -- Module : Data.Comp.Algebra -- Copyright : (c) 2010-2011 Patrick Bahr, Tom Hvitved -- License : BSD3 -- Maintainer : Patrick Bahr -- Stability : experimental -- Portability : non-portable (GHC Extensions) -- -- This module defines the notion of algebras and catamorphisms, and their -- generalizations to e.g. monadic versions and other (co)recursion schemes. -- -------------------------------------------------------------------------------- module Data.Comp.Algebra ( -- * Algebras & Catamorphisms Alg, free, cata, cata', appCxt, -- * Monadic Algebras & Catamorphisms AlgM, algM, freeM, cataM, cataM', -- * Term Homomorphisms CxtFun, SigFun, Hom, appHom, appHom', compHom, appSigFun, appSigFun', compSigFun, compSigFunHom, compHomSigFun, compAlgSigFun, hom, compAlg, compCoalg, compCVCoalg, -- * Monadic Term Homomorphisms CxtFunM, SigFunM, HomM, SigFunMD, HomMD, sigFunM, hom', appHomM, appHomM', homM, homMD, appSigFunM, appSigFunM', appSigFunMD, compHomM, compSigFunM, compSigFunHomM, compHomSigFunM, compAlgSigFunM, compAlgM, compAlgM', -- * Coalgebras & Anamorphisms Coalg, ana, ana', CoalgM, anaM, -- * R-Algebras & Paramorphisms RAlg, para, RAlgM, paraM, -- * R-Coalgebras & Apomorphisms RCoalg, apo, RCoalgM, apoM, -- * CV-Algebras & Histomorphisms CVAlg, histo, CVAlgM, histoM, -- * CV-Coalgebras & Futumorphisms CVCoalg, futu, CVCoalg', futu', CVCoalgM, futuM ) where import Data.Comp.Term import Data.Comp.Ops import Data.Traversable import Control.Monad hiding (sequence, mapM) import Prelude hiding (sequence, mapM) {-| This type represents an algebra over a functor @f@ and carrier @a@. -} type Alg f a = f a -> a {-| Construct a catamorphism for contexts over @f@ with holes of type @a@, from the given algebra. -} free :: forall f h a b . (Functor f) => Alg f b -> (a -> b) -> Cxt h f a -> b free f g = run where run :: Cxt h f a -> b run (Hole x) = g x run (Term t) = f (fmap run t) {-| Construct a catamorphism from the given algebra. -} cata :: forall f a . (Functor f) => Alg f a -> Term f -> a {-# NOINLINE [1] cata #-} -- cata f = free f undefined -- the above definition is safe since terms do not contain holes -- -- a direct implementation: cata f = run where run :: Term f -> a run = f . fmap run . unTerm {-| A generalisation of 'cata' from terms over @f@ to contexts over @f@, where the holes have the type of the algebra carrier. -} cata' :: (Functor f) => Alg f a -> Cxt h f a -> a {-# INLINE cata' #-} cata' f = free f id {-| This function applies a whole context into another context. -} appCxt :: (Functor f) => Context f (Cxt h f a) -> Cxt h f a -- appCxt = cata' Term appCxt (Hole x) = x appCxt (Term t) = Term (fmap appCxt t) {-| This type represents a monadic algebra. It is similar to 'Alg' but the return type is monadic. -} type AlgM m f a = f a -> m a {-| Convert a monadic algebra into an ordinary algebra with a monadic carrier. -} algM :: (Traversable f, Monad m) => AlgM m f a -> Alg f (m a) algM f x = sequence x >>= f {-| Construct a monadic catamorphism for contexts over @f@ with holes of type @a@, from the given monadic algebra. -} freeM :: forall h f a m b. (Traversable f, Monad m) => AlgM m f b -> (a -> m b) -> Cxt h f a -> m b -- freeM alg var = free (algM alg) var freeM algm var = run where run :: Cxt h f a -> m b run (Hole x) = var x run (Term t) = algm =<< mapM run t {-| Construct a monadic catamorphism from the given monadic algebra. -} cataM :: forall f m a. (Traversable f, Monad m) => AlgM m f a -> Term f -> m a {-# NOINLINE [1] cataM #-} -- cataM = cata . algM cataM algm = run where run :: Term f -> m a run = algm <=< mapM run . unTerm {-| A generalisation of 'cataM' from terms over @f@ to contexts over @f@, where the holes have the type of the monadic algebra carrier. -} cataM' :: forall h f a m . (Traversable f, Monad m) => AlgM m f a -> Cxt h f a -> m a {-# NOINLINE [1] cataM' #-} -- cataM' f = free (\x -> sequence x >>= f) return cataM' f = run where run :: Cxt h f a -> m a run (Hole x) = return x run (Term t) = f =<< mapM run t {-| This type represents a context function. -} type CxtFun f g = forall a h. Cxt h f a -> Cxt h g a {-| This type represents a signature function.-} type SigFun f g = forall a. f a -> g a {-| This type represents a term homomorphism. -} type Hom f g = SigFun f (Context g) {-| This function applies the given term homomorphism to a term/context. -} appHom :: forall f g . (Functor f, Functor g) => Hom f g -> CxtFun f g {-# NOINLINE [1] appHom #-} -- Note: The rank 2 type polymorphism is not necessary. Alternatively, also the type -- (Functor f, Functor g) => (f (Cxt h g b) -> Context g (Cxt h g b)) -> Cxt h f b -> Cxt h g b -- would achieve the same. The given type is chosen for clarity. appHom f = run where run :: CxtFun f g run (Hole x) = Hole x run (Term t) = appCxt (f (fmap run t)) -- | Apply a term homomorphism recursively to a term/context. This is -- a top-down variant of 'appHom'. appHom' :: forall f g . (Functor g) => Hom f g -> CxtFun f g {-# NOINLINE [1] appHom' #-} -- Note: The rank 2 type polymorphism is not necessary. Alternatively, also the type -- (Functor f, Functor g) => (f (Cxt h g b) -> Context g (Cxt h g b)) -> Cxt h f b -> Cxt h g b -- would achieve the same. The given type is chosen for clarity. appHom' f = run where run :: CxtFun f g run (Hole x) = Hole x run (Term t) = appCxt (fmap run (f t)) {-| Compose two term homomorphisms. -} compHom :: (Functor g, Functor h) => Hom g h -> Hom f g -> Hom f h -- Note: The rank 2 type polymorphism is not necessary. Alternatively, also the type -- (Functor f, Functor g) => (f (Cxt h g b) -> Context g (Cxt h g b)) -- -> (a -> Cxt h f b) -> a -> Cxt h g b -- would achieve the same. The given type is chosen for clarity. compHom f g = appHom f . g {-| Compose an algebra with a term homomorphism to get a new algebra. -} compAlg :: (Functor g) => Alg g a -> Hom f g -> Alg f a compAlg alg talg = cata' alg . talg {-| Compose a term homomorphism with a coalgebra to get a cv-coalgebra. -} compCoalg :: Hom f g -> Coalg f a -> CVCoalg' g a compCoalg hom coa = hom . coa {-| Compose a term homomorphism with a cv-coalgebra to get a new cv-coalgebra. -} compCVCoalg :: (Functor f, Functor g) => Hom f g -> CVCoalg' f a -> CVCoalg' g a compCVCoalg hom coa = appHom hom . coa {-| This function applies a signature function to the given context. -} appSigFun :: (Functor f) => SigFun f g -> CxtFun f g {-# NOINLINE [1] appSigFun #-} appSigFun f = run where run (Term t) = Term $ f $ fmap run t run (Hole x) = Hole x -- implementation via term homomorphisms: -- appSigFun f = appHom_ $ hom f -- | This function applies a signature function to the given -- context. This is a top-down variant of 'appSigFun'. appSigFun' :: (Functor g) => SigFun f g -> CxtFun f g {-# NOINLINE [1] appSigFun' #-} appSigFun' f = run where run (Term t) = Term $ fmap run $ f t run (Hole x) = Hole x {-| This function composes two signature functions. -} compSigFun :: SigFun g h -> SigFun f g -> SigFun f h compSigFun f g = f . g -- | This function composes a signature function with a term -- homomorphism. compSigFunHom :: (Functor g) => SigFun g h -> Hom f g -> Hom f h compSigFunHom f g = appSigFun f . g -- | This function composes a term homomorphism with a signature function. compHomSigFun :: Hom g h -> SigFun f g -> Hom f h compHomSigFun f g = f . g -- | This function composes an algebra with a signature function. compAlgSigFun :: Alg g a -> SigFun f g -> Alg f a compAlgSigFun f g = f . g -- | Lifts the given signature function to the canonical term -- homomorphism. hom :: (Functor g) => SigFun f g -> Hom f g hom f = simpCxt . f {-| This type represents a monadic context function. -} type CxtFunM m f g = forall a h. Cxt h f a -> m (Cxt h g a) {-| This type represents a monadic signature function. -} type SigFunM m f g = forall a. f a -> m (g a) {-| This type represents a monadic signature function. It is similar to 'SigFunM' but has monadic values also in the domain. -} type SigFunMD m f g = forall a. f (m a) -> m (g a) {-| This type represents a monadic term homomorphism. -} type HomM m f g = SigFunM m f (Context g) {-| This type represents a monadic term homomorphism. It is similar to 'HomM' but has monadic values also in the domain. -} type HomMD m f g = SigFunMD m f (Context g) {-| Lift the given signature function to a monadic signature function. Note that term homomorphisms are instances of signature functions. Hence this function also applies to term homomorphisms. -} sigFunM :: (Monad m) => SigFun f g -> SigFunM m f g sigFunM f = return . f {-| Lift the give monadic signature function to a monadic term homomorphism. -} hom' :: (Functor f, Functor g, Monad m) => SigFunM m f g -> HomM m f g hom' f = liftM (Term . fmap Hole) . f {-| Lift the given signature function to a monadic term homomorphism. -} homM :: (Functor g, Monad m) => SigFunM m f g -> HomM m f g homM f = liftM simpCxt . f {-| Apply a monadic term homomorphism recursively to a term/context. -} appHomM :: forall f g m . (Traversable f, Functor g, Monad m) => HomM m f g -> CxtFunM m f g {-# NOINLINE [1] appHomM #-} appHomM f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM appCxt . f =<< mapM run t -- | Apply a monadic term homomorphism recursively to a -- term/context. This a top-down variant of 'appHomM'. appHomM' :: forall f g m . (Traversable g, Monad m) => HomM m f g -> CxtFunM m f g {-# NOINLINE [1] appHomM' #-} appHomM' f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM appCxt . mapM run =<< f t {-| This function constructs the unique monadic homomorphism from the initial term algebra to the given term algebra. -} homMD :: forall f g m . (Traversable f, Functor g, Monad m) => HomMD m f g -> CxtFunM m f g homMD f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM appCxt (f (fmap run t)) {-| This function applies a monadic signature function to the given context. -} appSigFunM :: (Traversable f, Monad m) => SigFunM m f g -> CxtFunM m f g {-# NOINLINE [1] appSigFunM #-} appSigFunM f = run where run (Term t) = liftM Term . f =<< mapM run t run (Hole x) = return (Hole x) -- implementation via term homomorphisms -- appSigFunM f = appHomM $ hom' f -- | This function applies a monadic signature function to the given -- context. This is a top-down variant of 'appSigFunM'. appSigFunM' :: (Traversable g, Monad m) => SigFunM m f g -> CxtFunM m f g {-# NOINLINE [1] appSigFunM' #-} appSigFunM' f = run where run (Term t) = liftM Term . mapM run =<< f t run (Hole x) = return (Hole x) {-| This function applies a signature function to the given context. -} appSigFunMD :: forall f g m . (Traversable f, Functor g, Monad m) => SigFunMD m f g -> CxtFunM m f g appSigFunMD f = run where run :: Cxt h f a -> m (Cxt h g a) run (Hole x) = return (Hole x) run (Term t) = liftM Term (f (fmap run t)) {-| Compose two monadic term homomorphisms. -} compHomM :: (Traversable g, Functor h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h compHomM f g = appHomM f <=< g {-| Compose two monadic term homomorphisms. -} compHomM' :: (Traversable h, Monad m) => HomM m g h -> HomM m f g -> HomM m f h compHomM' f g = appHomM' f <=< g {-| Compose two monadic term homomorphisms. -} compHomM_ :: (Functor h, Functor g, Monad m) => Hom g h -> HomM m f g -> HomM m f h compHomM_ f g = liftM (appHom f) . g {-| Compose a monadic algebra with a monadic term homomorphism to get a new monadic algebra. -} compAlgM :: (Traversable g, Monad m) => AlgM m g a -> HomM m f g -> AlgM m f a compAlgM alg talg = cataM' alg <=< talg {-| Compose a monadic algebra with a term homomorphism to get a new monadic algebra. -} compAlgM' :: (Traversable g, Monad m) => AlgM m g a -> Hom f g -> AlgM m f a compAlgM' alg talg = cataM' alg . talg {-| This function composes two monadic signature functions. -} compSigFunM :: (Monad m) => SigFunM m g h -> SigFunM m f g -> SigFunM m f h compSigFunM f g = f <=< g compSigFunHomM :: (Traversable g, Functor h, Monad m) => SigFunM m g h -> HomM m f g -> HomM m f h compSigFunHomM f g = appSigFunM f <=< g {-| Compose two monadic term homomorphisms. -} compSigFunHomM' :: (Traversable h, Monad m) => SigFunM m g h -> HomM m f g -> HomM m f h compSigFunHomM' f g = appSigFunM' f <=< g {-| This function composes two monadic signature functions. -} compHomSigFunM :: (Monad m) => HomM m g h -> SigFunM m f g -> HomM m f h compHomSigFunM f g = f <=< g {-| This function composes two monadic signature functions. -} compAlgSigFunM :: (Monad m) => AlgM m g a -> SigFunM m f g -> AlgM m f a compAlgSigFunM f g = f <=< g ---------------- -- Coalgebras -- ---------------- {-| This type represents a coalgebra over a functor @f@ and carrier @a@. -} type Coalg f a = a -> f a {-| Construct an anamorphism from the given coalgebra. -} ana :: forall a f . Functor f => Coalg f a -> a -> Term f ana f = run where run :: a -> Term f run t = Term $ fmap run (f t) -- | Shortcut fusion variant of 'ana'. ana' :: forall a f . Functor f => Coalg f a -> a -> Term f ana' f t = build $ run t where run :: forall b . a -> Alg f b -> b run t con = run' t where run' :: a -> b run' t = con $ fmap run' (f t) build :: (forall a. Alg f a -> a) -> Term f {-# INLINE [1] build #-} build g = g Term {-| This type represents a monadic coalgebra over a functor @f@ and carrier @a@. -} type CoalgM m f a = a -> m (f a) {-| Construct a monadic anamorphism from the given monadic coalgebra. -} anaM :: forall a m f. (Traversable f, Monad m) => CoalgM m f a -> a -> m (Term f) anaM f = run where run :: a -> m (Term f) run t = liftM Term $ f t >>= mapM run -------------------------------- -- R-Algebras & Paramorphisms -- -------------------------------- {-| This type represents an r-algebra over a functor @f@ and carrier @a@. -} type RAlg f a = f (Term f, a) -> a {-| Construct a paramorphism from the given r-algebra. -} para :: (Functor f) => RAlg f a -> Term f -> a para f = snd . cata run where run t = (Term $ fmap fst t, f t) {-| This type represents a monadic r-algebra over a functor @f@ and carrier @a@. -} type RAlgM m f a = f (Term f, a) -> m a {-| Construct a monadic paramorphism from the given monadic r-algebra. -} paraM :: (Traversable f, Monad m) => RAlgM m f a -> Term f -> m a paraM f = liftM snd . cataM run where run t = do a <- f t return (Term $ fmap fst t, a) -------------------------------- -- R-Coalgebras & Apomorphisms -- -------------------------------- {-| This type represents an r-coalgebra over a functor @f@ and carrier @a@. -} type RCoalg f a = a -> f (Either (Term f) a) {-| Construct an apomorphism from the given r-coalgebra. -} apo :: (Functor f) => RCoalg f a -> a -> Term f apo f = run where run = Term . fmap run' . f run' (Left t) = t run' (Right a) = run a -- can also be defined in terms of anamorphisms (but less -- efficiently): -- apo f = ana run . Right -- where run (Left (Term t)) = fmap Left t -- run (Right a) = f a {-| This type represents a monadic r-coalgebra over a functor @f@ and carrier @a@. -} type RCoalgM m f a = a -> m (f (Either (Term f) a)) {-| Construct a monadic apomorphism from the given monadic r-coalgebra. -} apoM :: (Traversable f, Monad m) => RCoalgM m f a -> a -> m (Term f) apoM f = run where run a = do t <- f a t' <- mapM run' t return $ Term t' run' (Left t) = return t run' (Right a) = run a -- can also be defined in terms of anamorphisms (but less -- efficiently): -- apoM f = anaM run . Right -- where run (Left (Term t)) = return $ fmap Left t -- run (Right a) = f a ---------------------------------- -- CV-Algebras & Histomorphisms -- ---------------------------------- {-| This type represents a cv-algebra over a functor @f@ and carrier @a@. -} type CVAlg f a f' = f (Term f') -> a -- | This function applies 'projectA' at the tip of the term. projectTip :: (DistAnn f a f') => Term f' -> (f (Term f'), a) projectTip (Term v) = projectA v {-| Construct a histomorphism from the given cv-algebra. -} histo :: (Functor f,DistAnn f a f') => CVAlg f a f' -> Term f -> a histo alg = snd . projectTip . cata run where run v = Term $ injectA (alg v) v {-| This type represents a monadic cv-algebra over a functor @f@ and carrier @a@. -} type CVAlgM m f a f' = f (Term f') -> m a {-| Construct a monadic histomorphism from the given monadic cv-algebra. -} histoM :: (Traversable f, Monad m, DistAnn f a f') => CVAlgM m f a f' -> Term f -> m a histoM alg = liftM (snd . projectTip) . cataM run where run v = do r <- alg v return $ Term $ injectA r v ----------------------------------- -- CV-Coalgebras & Futumorphisms -- ----------------------------------- {-| This type represents a cv-coalgebra over a functor @f@ and carrier @a@. -} type CVCoalg f a = a -> f (Context f a) {-| Construct a futumorphism from the given cv-coalgebra. -} futu :: forall f a . Functor f => CVCoalg f a -> a -> Term f futu coa = ana run . Hole where run :: Coalg f (Context f a) run (Hole x) = coa x run (Term t) = t {-| This type represents a monadic cv-coalgebra over a functor @f@ and carrier @a@. -} type CVCoalgM m f a = a -> m (f (Context f a)) {-| Construct a monadic futumorphism from the given monadic cv-coalgebra. -} futuM :: forall f a m . (Traversable f, Monad m) => CVCoalgM m f a -> a -> m (Term f) futuM coa = anaM run . Hole where run :: CoalgM m f (Context f a) run (Hole x) = coa x run (Term t) = return t {-| This type represents a generalised cv-coalgebra over a functor @f@ and carrier @a@. -} type CVCoalg' f a = a -> Context f a {-| Construct a futumorphism from the given generalised cv-coalgebra. -} futu' :: forall f a . Functor f => CVCoalg' f a -> a -> Term f futu' coa = run where run :: a -> Term f run x = appCxt $ fmap run (coa x) ------------------------------------------- -- functions only used for rewrite rules -- ------------------------------------------- appAlgHom :: forall f g d . (Functor g) => Alg g d -> Hom f g -> Term f -> d appAlgHom alg hom = run where run :: Term f -> d run (Term t) = run' $ hom t run' :: Context g (Term f) -> d run' (Term t) = alg $ fmap run' t run' (Hole x) = run x -- | This function applies a signature function after a term homomorphism. appSigFunHom :: forall f g h. (Functor g) => SigFun g h -> Hom f g -> CxtFun f h {-# NOINLINE [1] appSigFunHom #-} appSigFunHom f g = run where run :: CxtFun f h run (Term t) = run' $ g t run (Hole h) = Hole h run' :: Context g (Cxt h' f b) -> Cxt h' h b run' (Term t) = Term $ f $ fmap run' t run' (Hole h) = run h -- | This function applies the given algebra bottom-up while applying -- the given term homomorphism top-down. Thereby we have no -- requirements on the source signature @f@. appAlgHomM :: forall m f g a. (Traversable g, Monad m) => AlgM m g a -> HomM m f g -> Term f -> m a appAlgHomM alg hom = run where run :: Term f -> m a run (Term t) = hom t >>= mapM run >>= run' run' :: Context g a -> m a run' (Term t) = mapM run' t >>= alg run' (Hole x) = return x appHomHomM :: forall m f g h . (Monad m, Traversable g, Functor h) => HomM m g h -> HomM m f g -> CxtFunM m f h appHomHomM f g = run where run :: CxtFunM m f h run (Term t) = run' =<< g t run (Hole h) = return $ Hole h run' :: Context g (Cxt h' f b) -> m (Cxt h' h b) run' (Term t) = liftM appCxt $ f =<< mapM run' t run' (Hole h) = run h appSigFunHomM :: forall m f g h . (Traversable g, Monad m) => SigFunM m g h -> HomM m f g -> CxtFunM m f h appSigFunHomM f g = run where run :: CxtFunM m f h run (Term t) = run' =<< g t run (Hole h) = return $ Hole h run' :: Context g (Cxt h' f b) -> m (Cxt h' h b) run' (Term t) = liftM Term $ f =<< mapM run' t run' (Hole h) = run h ------------------- -- rewrite rules -- ------------------- #ifndef NO_RULES {-# RULES "cata/appHom" forall (a :: Alg g d) (h :: Hom f g) x. cata a (appHom h x) = cata (compAlg a h) x; "cata/appHom'" forall (a :: Alg g d) (h :: Hom f g) x. cata a (appHom' h x) = appAlgHom a h x; "cata/appSigFun" forall (a :: Alg g d) (h :: SigFun f g) x. cata a (appSigFun h x) = cata (compAlgSigFun a h) x; "cata/appSigFun'" forall (a :: Alg g d) (h :: SigFun f g) x. cata a (appSigFun' h x) = appAlgHom a (hom h) x; "cata/appSigFunHom" forall (f :: Alg f3 d) (g :: SigFun f2 f3) (h :: Hom f1 f2) x. cata f (appSigFunHom g h x) = appAlgHom (compAlgSigFun f g) h x; "appAlgHom/appHom" forall (a :: Alg h d) (f :: Hom f g) (h :: Hom g h) x. appAlgHom a h (appHom f x) = cata (compAlg a (compHom h f)) x; "appAlgHom/appHom'" forall (a :: Alg h d) (f :: Hom f g) (h :: Hom g h) x. appAlgHom a h (appHom' f x) = appAlgHom a (compHom h f) x; "appAlgHom/appSigFun" forall (a :: Alg h d) (f :: SigFun f g) (h :: Hom g h) x. appAlgHom a h (appSigFun f x) = cata (compAlg a (compHomSigFun h f)) x; "appAlgHom/appSigFun'" forall (a :: Alg h d) (f :: SigFun f g) (h :: Hom g h) x. appAlgHom a h (appSigFun' f x) = appAlgHom a (compHomSigFun h f) x; "appAlgHom/appSigFunHom" forall (a :: Alg i d) (f :: Hom f g) (g :: SigFun g h) (h :: Hom h i) x. appAlgHom a h (appSigFunHom g f x) = appAlgHom a (compHom (compHomSigFun h g) f) x; "appHom/appHom" forall (a :: Hom g h) (h :: Hom f g) x. appHom a (appHom h x) = appHom (compHom a h) x; "appHom'/appHom'" forall (a :: Hom g h) (h :: Hom f g) x. appHom' a (appHom' h x) = appHom' (compHom a h) x; "appHom'/appHom" forall (a :: Hom g h) (h :: Hom f g) x. appHom' a (appHom h x) = appHom (compHom a h) x; "appHom/appHom'" forall (a :: Hom g h) (h :: Hom f g) x. appHom a (appHom' h x) = appHom' (compHom a h) x; "appSigFun/appSigFun" forall (f :: SigFun g h) (g :: SigFun f g) x. appSigFun f (appSigFun g x) = appSigFun (compSigFun f g) x; "appSigFun'/appSigFun'" forall (f :: SigFun g h) (g :: SigFun f g) x. appSigFun' f (appSigFun' g x) = appSigFun' (compSigFun f g) x; "appSigFun/appSigFun'" forall (f :: SigFun g h) (g :: SigFun f g) x. appSigFun f (appSigFun' g x) = appSigFunHom f (hom g) x; "appSigFun'/appSigFun" forall (f :: SigFun g h) (g :: SigFun f g) x. appSigFun' f (appSigFun g x) = appSigFun (compSigFun f g) x; "appHom/appSigFun" forall (f :: Hom g h) (g :: SigFun f g) x. appHom f (appSigFun g x) = appHom (compHomSigFun f g) x; "appHom/appSigFun'" forall (f :: Hom g h) (g :: SigFun f g) x. appHom f (appSigFun' g x) = appHom' (compHomSigFun f g) x; "appHom'/appSigFun'" forall (f :: Hom g h) (g :: SigFun f g) x. appHom' f (appSigFun' g x) = appHom' (compHomSigFun f g) x; "appHom'/appSigFun" forall (f :: Hom g h) (g :: SigFun f g) x. appHom' f (appSigFun g x) = appHom (compHomSigFun f g) x; "appSigFun/appHom" forall (f :: SigFun g h) (g :: Hom f g) x. appSigFun f (appHom g x) = appSigFunHom f g x; "appSigFun'/appHom'" forall (f :: SigFun g h) (g :: Hom f g) x. appSigFun' f (appHom' g x) = appHom' (compSigFunHom f g) x; "appSigFun/appHom'" forall (f :: SigFun g h) (g :: Hom f g) x. appSigFun f (appHom' g x) = appSigFunHom f g x; "appSigFun'/appHom" forall (f :: SigFun g h) (g :: Hom f g) x. appSigFun' f (appHom g x) = appHom (compSigFunHom f g) x; "appSigFunHom/appSigFun" forall (f :: SigFun f3 f4) (g :: Hom f2 f3) (h :: SigFun f1 f2) x. appSigFunHom f g (appSigFun h x) = appSigFunHom f (compHomSigFun g h) x; "appSigFunHom/appSigFun'" forall (f :: SigFun f3 f4) (g :: Hom f2 f3) (h :: SigFun f1 f2) x. appSigFunHom f g (appSigFun' h x) = appSigFunHom f (compHomSigFun g h) x; "appSigFunHom/appHom" forall (f :: SigFun f3 f4) (g :: Hom f2 f3) (h :: Hom f1 f2) x. appSigFunHom f g (appHom h x) = appSigFunHom f (compHom g h) x; "appSigFunHom/appHom'" forall (f :: SigFun f3 f4) (g :: Hom f2 f3) (h :: Hom f1 f2) x. appSigFunHom f g (appHom' h x) = appSigFunHom f (compHom g h) x; "appSigFun/appSigFunHom" forall (f :: SigFun f3 f4) (g :: SigFun f2 f3) (h :: Hom f1 f2) x. appSigFun f (appSigFunHom g h x) = appSigFunHom (compSigFun f g) h x; "appSigFun'/appSigFunHom" forall (f :: SigFun f3 f4) (g :: SigFun f2 f3) (h :: Hom f1 f2) x. appSigFun' f (appSigFunHom g h x) = appSigFunHom (compSigFun f g) h x; "appHom/appSigFunHom" forall (f :: Hom f3 f4) (g :: SigFun f2 f3) (h :: Hom f1 f2) x. appHom f (appSigFunHom g h x) = appHom' (compHom (compHomSigFun f g) h) x; "appHom'/appSigFunHom" forall (f :: Hom f3 f4) (g :: SigFun f2 f3) (h :: Hom f1 f2) x. appHom' f (appSigFunHom g h x) = appHom' (compHom (compHomSigFun f g) h) x; "appSigFunHom/appSigFunHom" forall (f1 :: SigFun f4 f5) (f2 :: Hom f3 f4) (f3 :: SigFun f2 f3) (f4 :: Hom f1 f2) x. appSigFunHom f1 f2 (appSigFunHom f3 f4 x) = appSigFunHom f1 (compHom (compHomSigFun f2 f3) f4) x; #-} {-# RULES "cataM/appHomM" forall (a :: AlgM Maybe g d) (h :: HomM Maybe f g) x. appHomM h x >>= cataM a = appAlgHomM a h x; "cataM/appHomM'" forall (a :: AlgM Maybe g d) (h :: HomM Maybe f g) x. appHomM' h x >>= cataM a = appAlgHomM a h x; "cataM/appSigFunM" forall (a :: AlgM Maybe g d) (h :: SigFunM Maybe f g) x. appSigFunM h x >>= cataM a = appAlgHomM a (homM h) x; "cataM/appSigFunM'" forall (a :: AlgM Maybe g d) (h :: SigFunM Maybe f g) x. appSigFunM' h x >>= cataM a = appAlgHomM a (homM h) x; "cataM/appHom" forall (a :: AlgM m g d) (h :: Hom f g) x. cataM a (appHom h x) = appAlgHomM a (sigFunM h) x; "cataM/appHom'" forall (a :: AlgM m g d) (h :: Hom f g) x. cataM a (appHom' h x) = appAlgHomM a (sigFunM h) x; "cataM/appSigFun" forall (a :: AlgM m g d) (h :: SigFun f g) x. cataM a (appSigFun h x) = appAlgHomM a (sigFunM $ hom h) x; "cataM/appSigFun'" forall (a :: AlgM m g d) (h :: SigFun f g) x. cataM a (appSigFun' h x) = appAlgHomM a (sigFunM $ hom h) x; "cataM/appSigFun" forall (a :: AlgM m g d) (h :: SigFun f g) x. cataM a (appSigFun h x) = appAlgHomM a (sigFunM $ hom h) x; "cataM/appSigFunHom" forall (a :: AlgM m h d) (g :: SigFun g h) (f :: Hom f g) x. cataM a (appSigFunHom g f x) = appAlgHomM a (sigFunM $ compSigFunHom g f) x; "appHomM/appHomM" forall (a :: HomM Maybe g h) (h :: HomM Maybe f g) x. appHomM h x >>= appHomM a = appHomM (compHomM a h) x; "appHomM/appSigFunM" forall (a :: HomM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM h x >>= appHomM a = appHomM (compHomSigFunM a h) x; "appHomM/appHomM'" forall (a :: HomM Maybe g h) (h :: HomM Maybe f g) x. appHomM' h x >>= appHomM a = appHomHomM a h x; "appHomM/appSigFunM'" forall (a :: HomM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM' h x >>= appHomM a = appHomHomM a (homM h) x; "appHomM'/appHomM" forall (a :: HomM Maybe g h) (h :: HomM Maybe f g) x. appHomM h x >>= appHomM' a = appHomM' (compHomM' a h) x; "appHomM'/appSigFunM" forall (a :: HomM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM h x >>= appHomM' a = appHomM' (compHomSigFunM a h) x; "appHomM'/appHomM'" forall (a :: HomM Maybe g h) (h :: HomM Maybe f g) x. appHomM' h x >>= appHomM' a = appHomM' (compHomM' a h) x; "appHomM'/appSigFunM'" forall (a :: HomM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM' h x >>= appHomM' a = appHomM' (compHomSigFunM a h) x; "appHomM/appHom" forall (a :: HomM m g h) (h :: Hom f g) x. appHomM a (appHom h x) = appHomHomM a (sigFunM h) x; "appHomM/appSigFun" forall (a :: HomM m g h) (h :: SigFun f g) x. appHomM a (appSigFun h x) = appHomHomM a (sigFunM $ hom h) x; "appHomM'/appHom" forall (a :: HomM m g h) (h :: Hom f g) x. appHomM' a (appHom h x) = appHomM' (compHomM' a (sigFunM h)) x; "appHomM'/appSigFun" forall (a :: HomM m g h) (h :: SigFun f g) x. appHomM' a (appSigFun h x) = appHomM' (compHomSigFunM a (sigFunM h)) x; "appHomM/appHom'" forall (a :: HomM m g h) (h :: Hom f g) x. appHomM a (appHom' h x) = appHomHomM a (sigFunM h) x; "appHomM/appSigFun'" forall (a :: HomM m g h) (h :: SigFun f g) x. appHomM a (appSigFun' h x) = appHomHomM a (sigFunM $ hom h) x; "appHomM'/appHom'" forall (a :: HomM m g h) (h :: Hom f g) x. appHomM' a (appHom' h x) = appHomM' (compHomM' a (sigFunM h)) x; "appHomM'/appSigFun'" forall (a :: HomM m g h) (h :: SigFun f g) x. appHomM' a (appSigFun' h x) = appHomM' (compHomSigFunM a (sigFunM h)) x; "appSigFunM/appHomM" forall (a :: SigFunM Maybe g h) (h :: HomM Maybe f g) x. appHomM h x >>= appSigFunM a = appSigFunHomM a h x; "appSigFunHomM/appSigFunM" forall (a :: SigFunM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM h x >>= appSigFunM a = appSigFunM (compSigFunM a h) x; "appSigFunM/appHomM'" forall (a :: SigFunM Maybe g h) (h :: HomM Maybe f g) x. appHomM' h x >>= appSigFunM a = appSigFunHomM a h x; "appSigFunM/appSigFunM'" forall (a :: SigFunM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM' h x >>= appSigFunM a = appSigFunHomM a (homM h) x; "appSigFunM'/appHomM" forall (a :: SigFunM Maybe g h) (h :: HomM Maybe f g) x. appHomM h x >>= appSigFunM' a = appHomM' (compSigFunHomM' a h) x; "appSigFunM'/appSigFunM" forall (a :: SigFunM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM h x >>= appSigFunM' a = appSigFunM' (compSigFunM a h) x; "appSigFunM'/appHomM'" forall (a :: SigFunM Maybe g h) (h :: HomM Maybe f g) x. appHomM' h x >>= appSigFunM' a = appHomM' (compSigFunHomM' a h) x; "appSigFunM'/appSigFunM'" forall (a :: SigFunM Maybe g h) (h :: SigFunM Maybe f g) x. appSigFunM' h x >>= appSigFunM' a = appSigFunM' (compSigFunM a h) x; "appSigFunM/appHom" forall (a :: SigFunM m g h) (h :: Hom f g) x. appSigFunM a (appHom h x) = appSigFunHomM a (sigFunM h) x; "appSigFunM/appSigFun" forall (a :: SigFunM m g h) (h :: SigFun f g) x. appSigFunM a (appSigFun h x) = appSigFunHomM a (sigFunM $ hom h) x; "appSigFunM'/appHom" forall (a :: SigFunM m g h) (h :: Hom f g) x. appSigFunM' a (appHom h x) = appHomM' (compSigFunHomM' a (sigFunM h)) x; "appSigFunM'/appSigFun" forall (a :: SigFunM m g h) (h :: SigFun f g) x. appSigFunM' a (appSigFun h x) = appSigFunM' (compSigFunM a (sigFunM h)) x; "appSigFunM/appHom'" forall (a :: SigFunM m g h) (h :: Hom f g) x. appSigFunM a (appHom' h x) = appSigFunHomM a (sigFunM h) x; "appSigFunM/appSigFun'" forall (a :: SigFunM m g h) (h :: SigFun f g) x. appSigFunM a (appSigFun' h x) = appSigFunHomM a (sigFunM $ hom h) x; "appSigFunM'/appHom'" forall (a :: SigFunM m g h) (h :: Hom f g) x. appSigFunM' a (appHom' h x) = appHomM' (compSigFunHomM' a (sigFunM h)) x; "appSigFunM'/appSigFun'" forall (a :: SigFunM m g h) (h :: SigFun f g) x. appSigFunM' a (appSigFun' h x) = appSigFunM' (compSigFunM a (sigFunM h)) x; "appHom/appHomM" forall (a :: Hom g h) (h :: HomM m f g) x. appHomM h x >>= (return . appHom a) = appHomM (compHomM_ a h) x; #-} {-# RULES "cata/build" forall alg (g :: forall a . Alg f a -> a) . cata alg (build g) = g alg #-} #endif