{-# LANGUAGE BangPatterns, TypeSynonymInstances, FlexibleInstances #-} {-# LANGUAGE CPP #-} {-# OPTIONS_GHC -O2 #-} {- This module does a lot of calculation that can be expensive, so optimise - it well -} -- | -- Copyright: 2015 Joey Hess -- License: BSD-2-clause -- -- Console regions are displayed near the bottom of the console, and can be -- updated concurrently by threads. Any other output displayed using -- `outputConcurrent` and `createProcessConcurrent` -- will scroll up above the open console regions. -- -- For example, this program: -- -- > import Control.Concurrent.Async -- > import Control.Concurrent -- > import System.Console.Concurrent -- > import System.Console.Regions -- > import System.Process -- > -- > main = displayConsoleRegions $ do -- > mapConcurrently download [1..5] -- > `concurrently` mapM_ message [1..10] -- > `concurrently` createProcessConcurrent (proc "echo" ["hello world"]) -- > -- > message :: Int -> IO () -- > message n = do -- > threadDelay 500000 -- > outputConcurrent ("Message " ++ show n ++ "\n") -- > -- > download :: Int -> IO () -- > download n = withConsoleRegion Linear $ \r -> do -- > setConsoleRegion r basemsg -- > go n r -- > where -- > basemsg = "Download " ++ show n -- > go c r -- > | c < 1 = finishConsoleRegion r (basemsg ++ " done!") -- > | otherwise = do -- > threadDelay 1000000 -- > appendConsoleRegion r " ... " -- > go (c-1) r -- -- Will display like this: -- -- > Message 1 -- > hello world -- > Message 2 -- > Download 1 ... -- > Download 2 ... -- > Download 3 ... -- -- Once the 1st download has finished, and another message has displayed, -- the console will update like this: -- -- > Message 1 -- > hello world -- > Message 2 -- > Download 1 done! -- > Message 3 -- > Download 2 ... ... -- > Download 3 ... ... module System.Console.Regions ( -- * Types ConsoleRegion, RegionLayout(..), ToRegionContent(..), RegionContent(..), LiftRegion(..), -- * Initialization displayConsoleRegions, withConsoleRegion, openConsoleRegion, newConsoleRegion, closeConsoleRegion, -- * Region content and display setConsoleRegion, appendConsoleRegion, finishConsoleRegion, getConsoleRegion, tuneDisplay, -- * STM region contents -- -- | The `ToRegionContent` instance for `STM` `Text` can be used to -- make regions that automatically update whenever there's -- a change to any of the STM values that they use. -- -- For example, a region that displays the screen size, -- and automatically refreshes it: -- -- > import qualified Data.Text as T -- -- > r <- openConsoleRegion Linear s -- > setConsoleRegion r $ do -- > w <- readTVar consoleWidth -- > h <- readTVar consoleHeight -- > return $ T.pack $ unwords -- > [ "size:" -- > , show w -- > , "x" -- > , show h -- > ] -- > consoleWidth, consoleHeight, regionList, waitDisplayChange, ) where import Data.Monoid import Data.String import Data.Char import qualified Data.Text as T import qualified Data.Text.Lazy as L import qualified Data.Text.IO as T import Data.Text (Text) import Control.Monad import Control.Monad.IO.Class (liftIO, MonadIO) import Control.Concurrent.STM import Control.Concurrent.STM.TSem import Control.Concurrent.Async import System.Console.ANSI import qualified System.Console.Terminal.Size as Console import System.IO import System.IO.Unsafe (unsafePerformIO) import Text.Read import Data.List #ifndef mingw32_HOST_OS import System.Posix.Signals import System.Posix.Signals.Exts #endif import Control.Applicative import Prelude import System.Console.Concurrent import Utility.Monad import Utility.Exception -- | Controls how a region is laid out in the console. -- -- Here's an annotated example of how the console layout works. -- -- > scrolling...... -- > scrolling...... -- > scrolling...... -- > aaaaaa......... -- Linear -- > bbbbbbbbbbbbbbb -- Linear -- > bbb............ (expanded to multiple lines) -- > ccccccccc...... -- Linear -- > ddddeeeefffffff -- [InLine] -- > fffffggggg..... (expanded to multiple lines) -- > data RegionLayout = Linear | InLine ConsoleRegion deriving (Eq) -- | A handle allowing access to a region of the console. newtype ConsoleRegion = ConsoleRegion (TVar R) deriving (Eq) data R = R { regionContent :: RegionContent , regionRender :: (Text -> STM Text) , regionLayout :: RegionLayout , regionChildren :: TVar [ConsoleRegion] } newtype RegionContent = RegionContent (STM Text) -- | All the regions that are currently displayed on the screen. -- -- The list is ordered from the bottom of the screen up. Reordering -- it will change the order in which regions are displayed. -- It's also fine to remove, duplicate, or add new regions to the list. {-# NOINLINE regionList #-} regionList :: TMVar [ConsoleRegion] regionList = unsafePerformIO newEmptyTMVarIO -- | On Unix systems, this TVar is automatically updated when the -- terminal is resized. On Windows, it is only initialized on program start -- with the current terminal size. {-# NOINLINE consoleSize #-} consoleSize :: TVar (Console.Window Int) consoleSize = unsafePerformIO $ newTVarIO $ Console.Window { Console.width = 80, Console.height = 25} type Width = Int -- | Gets the width of the console. -- -- On Unix, this is automatically updated when the terminal is resized. -- On Windows, it is only initialized on program start. consoleWidth :: STM Int consoleWidth = munge . Console.width <$> readTVar consoleSize where #ifndef mingw32_HOST_OS munge = id #else -- On Windows, writing to the right-most column caused some -- problimatic wrap, so avoid it. munge = pred #endif -- | Get the height of the console. consoleHeight :: STM Int consoleHeight = Console.height <$> readTVar consoleSize -- | Check if `displayConsoleRegions` is running. regionDisplayEnabled :: IO Bool regionDisplayEnabled = atomically $ not <$> isEmptyTMVar regionList -- | Many actions in this module can be run in either the IO monad -- or the STM monad. Using STM allows making several changes to the -- displayed regions atomically, with the display updated a single time. class LiftRegion m where liftRegion :: STM a -> m a instance LiftRegion STM where liftRegion = id instance LiftRegion IO where liftRegion = atomically -- | Values that can be displayed in a region. class ToRegionContent v where toRegionContent :: v -> RegionContent instance ToRegionContent String where toRegionContent = fromOutput instance ToRegionContent Text where toRegionContent = fromOutput -- | Note that using a lazy Text in a region will buffer it all in memory. instance ToRegionContent L.Text where toRegionContent = fromOutput fromOutput :: Outputable v => v -> RegionContent fromOutput = RegionContent . pure . toOutput -- | Makes a STM action be run to get the content of a region. -- -- Any change to the values that action reads will result in an immediate -- refresh of the display. instance ToRegionContent (STM Text) where toRegionContent = RegionContent -- | Sets the value of a console region. This will cause the -- console to be updated to display the new value. -- -- It's fine for the value to be longer than the terminal is wide, -- or to include newlines ('\n'). Regions expand to multiple lines as -- necessary. -- -- The value can include ANSI SGR escape sequences for changing -- the colors etc of all or part of a region. -- -- Other ANSI escape sequences, especially those doing cursor -- movement, will mess up the layouts of regions. Caveat emptor. setConsoleRegion :: (ToRegionContent v, LiftRegion m) => ConsoleRegion -> v -> m () setConsoleRegion r v = liftRegion $ modifyRegion r $ const $ pure $ toRegionContent v -- | Appends a value to the current value of a console region. -- -- > appendConsoleRegion progress "." -- add another dot to progress display appendConsoleRegion :: (Outputable v, LiftRegion m) => ConsoleRegion -> v -> m () appendConsoleRegion r v = liftRegion $ modifyRegion r $ \(RegionContent a) -> return $ RegionContent $ do t <- a return (t <> toOutput v) modifyRegion :: ConsoleRegion -> (RegionContent -> STM RegionContent) -> STM () modifyRegion (ConsoleRegion tv) f = do r <- readTVar tv rc <- f (regionContent r) let r' = r { regionContent = rc } writeTVar tv r' readRegionContent :: RegionContent -> STM Text readRegionContent (RegionContent a) = a resizeRegion :: Width -> ConsoleRegion -> STM [Text] resizeRegion width (ConsoleRegion tv) = do r <- readTVar tv ls <- calcRegionLines r width return ls -- | Runs the action with a new console region, closing the region when -- the action finishes or on exception. withConsoleRegion :: (MonadIO m, MonadMask m) => RegionLayout -> (ConsoleRegion -> m a) -> m a withConsoleRegion ly = bracketIO (openConsoleRegion ly) (closeConsoleRegion) -- | Opens a new console region. openConsoleRegion :: LiftRegion m => RegionLayout -> m ConsoleRegion openConsoleRegion ly = liftRegion $ do h <- newConsoleRegion ly T.empty case ly of Linear -> do ml <- tryTakeTMVar regionList case ml of Just l -> putTMVar regionList (h:l) -- displayConsoleRegions is not active, so -- it's not put on any list, and won't display Nothing -> return () InLine parent -> addChild h parent return h -- | Makes a new region, but does not add it to the display. newConsoleRegion :: (LiftRegion m) => ToRegionContent v => RegionLayout -> v -> m ConsoleRegion newConsoleRegion ly v = liftRegion $ do cs <- newTVar mempty let r = R { regionContent = RegionContent $ return mempty , regionRender = pure , regionLayout = ly , regionChildren = cs } h <- ConsoleRegion <$> newTVar r displayChildren h setConsoleRegion h v return h displayChildren :: ConsoleRegion -> STM () displayChildren p@(ConsoleRegion tv) = tuneDisplay p $ \t -> do children <- readTVar . regionChildren =<< readTVar tv ct <- T.concat <$> mapM getc children return $ t <> ct where getc (ConsoleRegion cv) = do c <- readTVar cv regionRender c =<< readRegionContent (regionContent c) -- | Closes a console region. Once closed, the region is removed from the -- display. closeConsoleRegion :: LiftRegion m => ConsoleRegion -> m () closeConsoleRegion h@(ConsoleRegion tv) = liftRegion $ do v <- tryTakeTMVar regionList case v of Just l -> let !l' = filter (/= h) l in putTMVar regionList l' _ -> return () ly <- regionLayout <$> readTVar tv case ly of Linear -> return () InLine parent -> removeChild h parent -- | Closes the console region, and displays the passed value in the -- scrolling area above the active console regions. When Nothing is passed, -- displays the current value of the console region. finishConsoleRegion :: (Outputable v, LiftRegion m) => ConsoleRegion -> v -> m () finishConsoleRegion h v = liftRegion $ do closeConsoleRegion h bufferOutputSTM StdOut (toOutput v <> fromString "\n") -- | Gets the current content of a console region. getConsoleRegion :: LiftRegion m => ConsoleRegion -> m Text getConsoleRegion (ConsoleRegion tv) = liftRegion $ readRegionContent . regionContent =<< readTVar tv -- | Changes how a console region displays. -- -- Each time the region's value changes, the STM action is provided -- with the current value of the region, and returns the value to display. -- -- For example, this will prevent a region from ever displaying more -- than 10 characters wide, and will make it display text reversed: -- -- > tuneDisplay myregion $ pure . T.take 10 -- > tuneDisplay myregion $ pure . T.reverse -- -- Note that repeated calls to tuneDisplay are cumulative. -- -- Normally, the STM action should avoid retrying, as that would -- block all display updates. tuneDisplay :: LiftRegion m => ConsoleRegion -> (Text -> STM Text) -> m () tuneDisplay (ConsoleRegion tv) renderer = liftRegion $ do r <- readTVar tv let rr = \t -> renderer =<< regionRender r t let r' = r { regionRender = rr } writeTVar tv r' addChild :: ConsoleRegion -> ConsoleRegion -> STM () addChild child _parent@(ConsoleRegion pv) = do cv <- regionChildren <$> readTVar pv children <- readTVar cv let !children' = filter (/= child) children ++ [child] writeTVar cv children' removeChild :: ConsoleRegion -> ConsoleRegion -> STM () removeChild child _parent@(ConsoleRegion pv) = do cv <- regionChildren <$> readTVar pv modifyTVar' cv (filter (/= child)) -- | Handles all display for the other functions in this module. -- -- Note that this uses `lockOutput`, so it takes over all output to the -- console while the passed IO action is running. As well as displaying -- the console regions, this handles display of anything buffered by -- `outputConcurrent` and `createProcessConcurrent`. -- -- When standard output is not an ANSI capable terminal, -- console regions are not displayed. displayConsoleRegions :: (MonadIO m, MonadMask m) => m a -> m a displayConsoleRegions a = ifM (liftIO regionDisplayEnabled) ( a -- displayConsoleRegions is already running , lockOutput $ bracket setup cleanup (const a) ) where setup = liftIO $ do atomically $ putTMVar regionList [] endsignal <- atomically $ do s <- newTSem 1 waitTSem s return s isterm <- liftIO $ hSupportsANSI stdout when isterm trackConsoleWidth da <- async $ displayThread isterm endsignal return (isterm, da, endsignal) cleanup (isterm, da, endsignal) = liftIO $ do atomically $ signalTSem endsignal void $ wait da void $ atomically $ takeTMVar regionList when isterm $ installResizeHandler Nothing trackConsoleWidth :: IO () trackConsoleWidth = do let getsz = maybe noop (atomically . writeTVar consoleSize) =<< Console.size getsz installResizeHandler (Just getsz) data DisplayChange = BufferChange BufferSnapshot | RegionChange RegionSnapshot | RegionListChange RegionSnapshot | TerminalResize Width | Shutdown | DisplayChangeBarrier Barrier type BufferSnapshot = (StdHandle, OutputBuffer) type RegionSnapshot = ([ConsoleRegion], [R], [[Text]]) type Barrier = Integer -- | This is a broadcast TChan, which gets a DisplayChange written to it -- after the display has been updated. It can be used to wait for something -- to be displayed. {-# NOINLINE displayUpdateNotifier #-} displayUpdateNotifier :: TChan DisplayChange displayUpdateNotifier = unsafePerformIO $ newBroadcastTChanIO {-# NOINLINE displayChangeBarrier #-} displayChangeBarrier :: TVar Barrier displayChangeBarrier = unsafePerformIO $ newTVarIO 0 -- | Runs a STM action, and waits for the display to be fully updated -- before returning. waitDisplayChange :: STM a -> IO a waitDisplayChange a = do r <- atomically a c <- atomically $ dupTChan displayUpdateNotifier b <- atomically $ do !b <- succ <$> readTVar displayChangeBarrier writeTVar displayChangeBarrier b return b atomically $ waitchange c b return r where waitchange c b = do change <- readTChan c case change of DisplayChangeBarrier b' | b' == b -> return () _ -> waitchange c b displayThread :: Bool -> TSem -> IO () displayThread isterm endsignal = do origwidth <- atomically consoleWidth origbarrier <- atomically (readTVar displayChangeBarrier) go ([], [], []) origwidth origbarrier where go origsnapshot@(orighandles, origregions, origlines) origwidth origbarrier = do let waitwidthchange = do w <- consoleWidth if w == origwidth then retry else return w let waitbarrierchange = do b <- readTVar displayChangeBarrier if b /= origbarrier then return b else retry let waitanychange = (RegionChange <$> regionWaiter origsnapshot origwidth) `orElse` (RegionListChange <$> regionListWaiter origsnapshot) `orElse` (BufferChange <$> outputBufferWaiterSTM waitCompleteLines) `orElse` (TerminalResize <$> waitwidthchange) `orElse` (waitTSem endsignal >> pure Shutdown) `orElse` -- Must come last, so the changes above are -- processed before barriers. (DisplayChangeBarrier <$> waitbarrierchange) (change, height) <- atomically $ (,) <$> waitanychange <*> consoleHeight let onscreen = take (height - 1) . concat let update snapshot@(_, _, newlines) = do when isterm $ changedLines (onscreen origlines) (onscreen newlines) return $ go snapshot origwidth origbarrier next <- case change of RegionChange snapshot -> update snapshot RegionListChange snapshot -> update snapshot BufferChange (h, buf) -> do -- Note that even when every available line -- is dedicated to visible regions, the -- buffer is still displayed. It would be -- more efficient to not display it, but -- this makes it available in scroll back. let origlines' = onscreen origlines inAreaAbove isterm (length origlines') origlines' $ emitOutputBuffer h buf return $ go origsnapshot origwidth origbarrier TerminalResize newwidth -> do newlines <- atomically (mapM (resizeRegion newwidth) orighandles) when isterm $ do resizeRecovery (onscreen newlines) return $ go (orighandles, origregions, newlines) newwidth origbarrier Shutdown -> return $ return () DisplayChangeBarrier b -> return $ go origsnapshot origwidth b hFlush stdout atomically $ writeTChan displayUpdateNotifier change next readRegions :: [ConsoleRegion] -> STM [R] readRegions = mapM (\(ConsoleRegion h) -> readTVar h) -- | Wait for any changes to the region list, eg adding or removing a region. regionListWaiter :: RegionSnapshot -> STM RegionSnapshot regionListWaiter (orighandles, _origregions, origlines) = do handles <- readTMVar regionList if handles == orighandles then retry else do rs <- readRegions handles return (handles, rs, origlines) -- Wait for any changes to any of the contents of regions currently in the -- region list. regionWaiter :: RegionSnapshot -> Width -> STM RegionSnapshot regionWaiter (orighandles, _origregions, origlines) width = do rs <- readRegions orighandles newlines <- mapM getr rs unless (newlines /= origlines) retry return (orighandles, rs, newlines) where getr r = calcRegionLines r width -- This is not an optimal screen update like curses can do, but it's -- pretty efficient, most of the time! changedLines :: [Text] -> [Text] -> IO () changedLines origlines newlines | delta == 0 = do -- The total number of lines is unchanged, so update -- whichever ones have changed, and leave the rest as-is. diffUpdate origlines newlines | delta > 0 = do -- Added more lines, so output each, with a -- newline, thus scrolling the old lines up -- the screen. (We can do this, because the cursor -- is left below the first line.) let addedlines = reverse (take delta newlines) displayLines addedlines -- Some existing lines may have also changed.. let scrolledlines = addedlines ++ origlines diffUpdate scrolledlines newlines | otherwise = do -- Some lines were removed. Move up that many lines, -- clearing each line, and update any changed lines. replicateM_ (abs delta) $ do setCursorColumn 0 cursorUp 1 clearLine diffUpdate (drop (abs delta) origlines) newlines where delta = length newlines - length origlines diffUpdate :: [Text] -> [Text] -> IO () diffUpdate old new = updateLines (zip (zip new changed) old) where changed = map (uncurry (/=)) (zip new old) ++ repeat True changeOffsets :: [((r, Bool), r)] -> Int -> [((r, Int), r)] -> [((r, Int), r)] changeOffsets [] _ c = reverse c changeOffsets (((new, changed), old):rs) n c | changed = changeOffsets rs 1 (((new, n), old):c) | otherwise = changeOffsets rs (succ n) c -- Displays lines that are paired with True, and skips over the rest. -- Cursor is assumed to be just below the first line at the -- beginning, and is put back there at the end. updateLines :: [((Text, Bool), Text)] -> IO () updateLines l | null l' = noop | otherwise = do forM_ l' $ \((newt, offset), oldt) -> do setCursorColumn 0 cursorUp offset #ifndef mingw32_HOST_OS T.hPutStr stdout $ genLineUpdate $ calcLineUpdate oldt newt #else -- Windows does not support ansi characters -- emitted in a string, so do a full line -- redraw. T.hPutStr stdout newt clearFromCursorToLineEnd #endif cursorDown (sum (map (snd . fst) l')) setCursorColumn 0 where l' = changeOffsets l 1 [] -- Recover from a resize by redrawing all region lines. -- -- The resize can change the position of the cursor, which would garble -- the display going forward. To fix, the cursor is moved to the top of -- the screen, which is cleared, and all regions are redrawn from there. resizeRecovery :: [Text] -> IO () resizeRecovery newlines = do setCursorPosition 0 0 inAreaAbove True 0 newlines $ return () -- Move cursor up before the lines, performs some output there, -- which will scroll down and overwrite the lines, so -- redraws all the lines below. inAreaAbove :: Bool -> Int -> [Text] -> IO () -> IO () inAreaAbove isterm numlines ls outputter = do when isterm $ do unless (numlines < 1) $ do setCursorColumn 0 cursorUp $ numlines clearFromCursorToScreenEnd -- Flush stdout now, because the outputter may write to stderr, so -- the cursor needs to be moved first. hFlush stdout outputter when isterm $ do setCursorColumn 0 -- just in case the output lacked a newline displayLines (reverse ls) displayLines :: [Text] -> IO () displayLines = mapM_ $ \l -> do T.hPutStr stdout l putChar '\n' installResizeHandler :: Maybe (IO ()) -> IO () #ifndef mingw32_HOST_OS installResizeHandler h = void $ installHandler windowChange (maybe Default Catch h) Nothing #else installResizeHandler _ = return () #endif calcRegionLines :: R -> Width -> STM [Text] calcRegionLines r width = do t <- regionRender r =<< readRegionContent (regionContent r) return $ reverse $ calcLines t width -- | Splits a Text into the lines it would display using when output onto -- a console with a given width, starting from the first column. -- -- ANSI SGR sequences are handled specially, so that color, etc settings -- work despite the lines being split up, and the lines can be output -- indepedently. For example, "foooREDbar bazRESET" when split into lines -- becomes ["fooREDbarRESET", "RED bazRESET"] calcLines :: Text -> Width -> [Text] calcLines t width | width < 1 || T.null t = [t] -- even an empty text is 1 line high | otherwise = calcLines' width [] [] 0 1 (T.length t) t calcLines' :: Int -> [Text] -> [Text] -> Int -> Int -> Int -> Text -> [Text] calcLines' width collectedlines collectedSGR i displaysize len t | i >= len = if i > 0 then reverse (finishline t) else reverse collectedlines | t1 == '\n' = calcLines' width (finishline $ T.init currline) [] 0 1 (T.length rest) (contSGR rest) -- ANSI escape sequences do not take up space on screen. | t1 == '\ESC' && i+1 < len = case T.index t (i+1) of '[' -> skipansi endCSI True ']' -> skipansi endOSC False _ -> calcLines' width collectedlines collectedSGR (i+1) displaysize len t -- Control characters do not take up space on screen. | isControl t1 = calcLines' width collectedlines collectedSGR (i+1) displaysize len t | displaysize >= width = calcLines' width (finishline currline) [] 0 1 (T.length rest) (contSGR rest) | otherwise = calcLines' width collectedlines collectedSGR (i+1) (displaysize+1) len t where t1 = T.index t i (currline, rest) = T.splitAt (i+1) t skipansi toend isCSI = case T.findIndex toend (T.drop (i+2) t) of Just csiend -> calcLines' width collectedlines (addSGR (csiend+2)) (i+2+csiend) (displaysize-1) len t Nothing -> reverse (finishline t) where addSGR csiend | not isCSI = collectedSGR | ansicode == resetSGR = [] | not (T.null ansicode) && T.last ansicode == endSGR = ansicode : collectedSGR | otherwise = collectedSGR where ansicode = T.take (csiend + 1) (T.drop i t) finishline l = closeSGR l : collectedlines -- Close any open SGR codes at end of line closeSGR l | null collectedSGR = l | otherwise = l <> resetSGR -- Continue any open SGR codes from previous line contSGR l = mconcat (reverse collectedSGR) <> l resetSGR :: Text resetSGR = T.pack (setSGRCode [Reset]) endCSI :: Char -> Bool endCSI c = let o = ord c in o >= 64 && o < 127 endOSC :: Char -> Bool endOSC c = c == '\BEL' endSGR :: Char endSGR = 'm' -- | Finds the least expensive output to make a console that was displaying -- the old line display the new line. Cursor starts at far left. -- -- Basically, loop through and find spans where the old and new line are -- the same. Generate cursorForwardCode ANSI sequences to skip over those -- spans, unless such a sequence would be longer than the span it's skipping. -- -- Since ANSI sequences can be present in the line, need to take them -- into account. Generally, each of the sequences in new has to be included, -- even if old contained the same sequence: -- -- > old: GREENfoofoofooREDbarbarbarRESETbaz -- > new: GREENfoofoofooREDxarbarbaxRESETbaz -- > ret: GREEN-------->REDx------>yRESET -- -- (The first GREEN does not effect any output text, so it can be elided.) -- -- Also, despite old having the same second span as new, in the same -- location, that span has to be re-emitted because its color changed: -- -- > old: GREENfoofooREDbarbarbarbarbar -- > new: GREENfoofoofooTANbarbarbar -- > ret: GREEN----->fooTANbarbarbarCLEARREST -- -- Also note above that the sequence has to clear the rest of the line, -- since the new line is shorter than the old. calcLineUpdate :: Text -> Text -> [LineUpdate] calcLineUpdate old new = reverse $ go (advanceLine old [] []) (advanceLine new [] []) where go (Just _, _, _, _) (Nothing, _, past, _) = ClearToEnd : past go (Nothing, _, _, _) (Nothing, _, past, _) = past go (Nothing, _, _, _) (Just n, ns, past, _) = Display ns : Display (T.singleton n) : past go (Just o, os, _, oinvis) (Just n, ns, past, ninvis) | o == n && oinvis == ninvis = go (advanceLine os [] oinvis) (advanceLine ns (Skip [o] : past) ninvis) | otherwise = go (advanceLine os [] oinvis) (advanceLine ns (Display (T.singleton n) : past) ninvis) type Past = [LineUpdate] type Invis = [LineUpdate] -- Find next character of t that is not a ANSI escape sequence -- or control char. Any such passed on the way to the character -- are prepended to past, and added to invis. -- -- resetSGR is handled specially; it causes all SGRs to be removed from -- invis, It's still prepended to past. advanceLine :: Text -> Past -> Invis -> (Maybe Char, Text, Past, Invis) advanceLine t past invis | T.null t = (Nothing, T.empty, past, invis) | otherwise = case T.head t of '\ESC' -> case T.drop 1 t of t' | T.null t' -> advanceLine (T.drop 1 t) (Skip "\ESC":past) (Skip "\ESC":invis) | otherwise -> case T.head t' of '[' -> skipansi endCSI ']' -> skipansi endOSC c -> (Just c, T.drop 2 t, Skip "\ESC":past, Skip "\ESC":invis) c | isControl c -> advanceLine (T.drop 1 t) (Skip [c]:past) (Skip [c]:invis) | otherwise -> (Just c, T.drop 1 t, past, invis) where skipansi toend = case T.findIndex toend (T.drop 2 t) of Just csiend -> let sgr = SGR (T.take (csiend+3) t) in advanceLine (T.drop (csiend+3) t) (sgr:past) (addsgr sgr invis) Nothing -> (Nothing, T.empty, past, invis) addsgr (SGR sgrt) l | sgrt == resetSGR = filter (not . isSGR) l addsgr s l = s:l data LineUpdate = Display Text | Skip [Char] | SGR Text | ClearToEnd deriving (Eq, Show) isSGR :: LineUpdate -> Bool isSGR (SGR _) = True isSGR _ = False genLineUpdate :: [LineUpdate] -> Text genLineUpdate l = T.concat $ map tot (optimiseLineUpdate l) where tot (Display t) = t tot (Skip s) -- length (cursorForwardCode 1) == 4 so there's no point -- generating that for a skip of less than 5. | len < 5 = T.pack s | otherwise = T.pack (cursorForwardCode len) where len = length s tot (SGR t) = t tot ClearToEnd = T.pack clearFromCursorToLineEndCode optimiseLineUpdate :: [LineUpdate] -> [LineUpdate] optimiseLineUpdate = go [] where -- elide trailing Skips go (Skip _:rest) [] = go rest [] -- elide SGRs at the end of the line, except for the reset SGR go (SGR t:rest) [] | t /= resetSGR = go rest [] go c [] = reverse c -- combine adjacent SGRs and Skips go c (SGR t1:Skip s:SGR t2:rest) = tryharder c (SGR (combineSGR t1 t2):Skip s:rest) go c (Skip s:Skip s':rest) = tryharder c (Skip (s++s'):rest) go c (SGR t1:SGR t2:rest) = tryharder c (SGR (combineSGR t1 t2):rest) go c (v:rest) = go (v:c) rest tryharder c l = go [] (reverse c ++ l) -- Parse and combine 2 ANSI SGR sequences into one. combineSGR :: Text -> Text -> Text combineSGR a b = case combineSGRCodes (codes a) (codes b) of Nothing -> a <> b Just cs -> T.pack $ "\ESC[" ++ intercalate ";" (map show cs) ++ "m" where codes = map (readMaybe . T.unpack) . T.split (== ';') . T.drop 2 . T.init -- Prefers values from the second sequence when there's a conflict with -- values from the first sequence. combineSGRCodes :: [Maybe Int] -> [Maybe Int] -> Maybe [Int] combineSGRCodes as bs = map snd . nubBy (\a b -> fst a == fst b) <$> mapM range (reverse bs ++ reverse as) where range Nothing = Nothing range (Just x) | x >= 30 && x <= 37 = Just (Foreground, x) | x >= 40 && x <= 47 = Just (Background, x) | x >= 90 && x <= 97 = Just (Foreground, x) | x >= 100 && x <= 107 = Just (Background, x) | otherwise = Nothing