constraints-deriving-1.0.3.0: Manipulating constraints and deriving class instances programmatically.

Copyright(C) 2011-2015 Edward Kmett
LicenseBSD-style (see the file LICENSE)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellUnsafe
LanguageHaskell2010

Data.Constraint.Unsafe

Description

This module is taken from constraints:Data.Constraint.Unsafe A few things have been cut from the module.

Synopsis

Documentation

class a ~R# b => Coercible (a :: k0) (b :: k0) #

Coercible is a two-parameter class that has instances for types a and b if the compiler can infer that they have the same representation. This class does not have regular instances; instead they are created on-the-fly during type-checking. Trying to manually declare an instance of Coercible is an error.

Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:

instance Coercible a a

Furthermore, for every type constructor there is an instance that allows to coerce under the type constructor. For example, let D be a prototypical type constructor (data or newtype) with three type arguments, which have roles nominal, representational resp. phantom. Then there is an instance of the form

instance Coercible b b' => Coercible (D a b c) (D a b' c')

Note that the nominal type arguments are equal, the representational type arguments can differ, but need to have a Coercible instance themself, and the phantom type arguments can be changed arbitrarily.

The third kind of instance exists for every newtype NT = MkNT T and comes in two variants, namely

instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b

This instance is only usable if the constructor MkNT is in scope.

If, as a library author of a type constructor like Set a, you want to prevent a user of your module to write coerce :: Set T -> Set NT, you need to set the role of Set's type parameter to nominal, by writing

type role Set nominal

For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.

Since: ghc-prim-4.7.0.0

Instances
HasDict (Coercible a b) (Coercion a b) Source # 
Instance details

Defined in Data.Constraint

Methods

evidence :: Coercion a b -> Dict (Coercible a b) Source #

unsafeCoerceConstraint :: a :- b Source #

Coerce a dictionary unsafely from one type to another

unsafeDerive :: Coercible n o => (o -> n) -> t o :- t n Source #

Coerce a dictionary unsafely from one type to a newtype of that type

unsafeUnderive :: Coercible n o => (o -> n) -> t n :- t o Source #

Coerce a dictionary unsafely from a newtype of a type to the base type