{-# LANGUAGE CPP #-} {-# LANGUAGE TypeOperators #-} {-# OPTIONS_GHC -fno-warn-deprecations #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Contravariant.Divisible -- Copyright : (C) 2014-2015 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : portable -- -- This module supplies contravariant analogues to the 'Applicative' and 'Alternative' classes. ---------------------------------------------------------------------------- module Data.Functor.Contravariant.Divisible ( -- * Contravariant Applicative Divisible(..), divided, conquered, liftD -- * Contravariant Alternative , Decidable(..), chosen, lost ) where import Control.Applicative import Control.Applicative.Backwards import Control.Arrow import Control.Monad.Trans.Error import Control.Monad.Trans.Except import Control.Monad.Trans.Identity import Control.Monad.Trans.List import Control.Monad.Trans.Maybe import qualified Control.Monad.Trans.RWS.Lazy as Lazy import qualified Control.Monad.Trans.RWS.Strict as Strict import Control.Monad.Trans.Reader import qualified Control.Monad.Trans.State.Lazy as Lazy import qualified Control.Monad.Trans.State.Strict as Strict import qualified Control.Monad.Trans.Writer.Lazy as Lazy import qualified Control.Monad.Trans.Writer.Strict as Strict import Data.Either import Data.Functor.Compose import Data.Functor.Constant import Data.Functor.Contravariant import Data.Functor.Product import Data.Functor.Reverse import Data.Void #if MIN_VERSION_base(4,8,0) import Data.Monoid (Alt(..)) #else import Data.Monoid (Monoid(..)) #endif #if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged) import Data.Proxy #endif #if MIN_VERSION_StateVar import Data.StateVar #endif #if __GLASGOW_HASKELL__ >= 702 #define GHC_GENERICS import GHC.Generics #endif -------------------------------------------------------------------------------- -- * Contravariant Applicative -------------------------------------------------------------------------------- -- | -- -- A 'Divisible' contravariant functor is the contravariant analogue of 'Applicative'. -- -- In denser jargon, a 'Divisible' contravariant functor is a monoid object in the category -- of presheaves from Hask to Hask, equipped with Day convolution mapping the Cartesian -- product of the source to the Cartesian product of the target. -- -- By way of contrast, an 'Applicative' functor can be viewed as a monoid object in the -- category of copresheaves from Hask to Hask, equipped with Day convolution mapping the -- Cartesian product of the source to the Cartesian product of the target. -- -- Given the canonical diagonal morphism: -- -- @ -- delta a = (a,a) -- @ -- -- @'divide' 'delta'@ should be associative with 'conquer' as a unit -- -- @ -- 'divide' 'delta' m 'conquer' = m -- 'divide' 'delta' 'conquer' m = m -- 'divide' 'delta' ('divide' 'delta' m n) o = 'divide' 'delta' m ('divide' 'delta' n o) -- @ -- -- With more general arguments you'll need to reassociate and project using the monoidal -- structure of the source category. (Here fst and snd are used in lieu of the more restricted -- lambda and rho, but this construction works with just a monoidal category.) -- -- @ -- 'divide' f m 'conquer' = 'contramap' ('fst' . f) m -- 'divide' f 'conquer' m = 'contramap' ('snd' . f) m -- 'divide' f ('divide' g m n) o = 'divide' f' m ('divide' 'id' n o) where -- f' a = case f a of (bc,d) -> case g bc of (b,c) -> (a,(b,c)) -- @ class Contravariant f => Divisible f where divide :: (a -> (b, c)) -> f b -> f c -> f a -- | The underlying theory would suggest that this should be: -- -- @ -- conquer :: (a -> ()) -> f a -- @ -- -- However, as we are working over a Cartesian category (Hask) and the Cartesian product, such an input -- morphism is uniquely determined to be @'const' 'mempty'@, so we elide it. conquer :: f a -- | -- @ -- 'divided' = 'divide' 'id' -- @ divided :: Divisible f => f a -> f b -> f (a, b) divided = divide id -- | Redundant, but provided for symmetry. -- -- @ -- 'conquered' = 'conquer' -- @ conquered :: Divisible f => f () conquered = conquer -- | -- This is the divisible analogue of 'liftA'. It gives a viable default definition for 'contramap' in terms -- of the members of 'Divisible'. -- -- @ -- 'liftD' f = 'divide' ((,) () . f) 'conquer' -- @ liftD :: Divisible f => (a -> b) -> f b -> f a liftD f = divide ((,) () . f) conquer instance Monoid r => Divisible (Op r) where divide f (Op g) (Op h) = Op $ \a -> case f a of (b, c) -> g b `mappend` h c conquer = Op $ const mempty instance Divisible Comparison where divide f (Comparison g) (Comparison h) = Comparison $ \a b -> case f a of (a',a'') -> case f b of (b',b'') -> g a' b' `mappend` h a'' b'' conquer = Comparison $ \_ _ -> EQ instance Divisible Equivalence where divide f (Equivalence g) (Equivalence h) = Equivalence $ \a b -> case f a of (a',a'') -> case f b of (b',b'') -> g a' b' && h a'' b'' conquer = Equivalence $ \_ _ -> True instance Divisible Predicate where divide f (Predicate g) (Predicate h) = Predicate $ \a -> case f a of (b, c) -> g b && h c conquer = Predicate $ const True instance Monoid m => Divisible (Const m) where divide _ (Const a) (Const b) = Const (mappend a b) conquer = Const mempty #if MIN_VERSION_base(4,8,0) instance Divisible f => Divisible (Alt f) where divide f (Alt l) (Alt r) = Alt $ divide f l r conquer = Alt conquer #endif #ifdef GHC_GENERICS instance Divisible U1 where divide _ U1 U1 = U1 conquer = U1 instance Divisible f => Divisible (Rec1 f) where divide f (Rec1 l) (Rec1 r) = Rec1 $ divide f l r conquer = Rec1 conquer instance Divisible f => Divisible (M1 i c f) where divide f (M1 l) (M1 r) = M1 $ divide f l r conquer = M1 conquer instance (Divisible f, Divisible g) => Divisible (f :*: g) where divide f (l1 :*: r1) (l2 :*: r2) = divide f l1 l2 :*: divide f r1 r2 conquer = conquer :*: conquer instance (Applicative f, Divisible g) => Divisible (f :.: g) where divide f (Comp1 l) (Comp1 r) = Comp1 (divide f <$> l <*> r) conquer = Comp1 $ pure conquer #endif instance Divisible f => Divisible (Backwards f) where divide f (Backwards l) (Backwards r) = Backwards $ divide f l r conquer = Backwards conquer instance Divisible m => Divisible (ErrorT e m) where divide f (ErrorT l) (ErrorT r) = ErrorT $ divide (funzip . fmap f) l r conquer = ErrorT conquer instance Divisible m => Divisible (ExceptT e m) where divide f (ExceptT l) (ExceptT r) = ExceptT $ divide (funzip . fmap f) l r conquer = ExceptT conquer instance Divisible f => Divisible (IdentityT f) where divide f (IdentityT l) (IdentityT r) = IdentityT $ divide f l r conquer = IdentityT conquer instance Divisible m => Divisible (ListT m) where divide f (ListT l) (ListT r) = ListT $ divide (funzip . map f) l r conquer = ListT conquer instance Divisible m => Divisible (MaybeT m) where divide f (MaybeT l) (MaybeT r) = MaybeT $ divide (funzip . fmap f) l r conquer = MaybeT conquer instance Divisible m => Divisible (ReaderT r m) where divide abc (ReaderT rmb) (ReaderT rmc) = ReaderT $ \r -> divide abc (rmb r) (rmc r) conquer = ReaderT $ \_ -> conquer instance Divisible m => Divisible (Lazy.RWST r w s m) where divide abc (Lazy.RWST rsmb) (Lazy.RWST rsmc) = Lazy.RWST $ \r s -> divide (\ ~(a, s', w) -> case abc a of ~(b, c) -> ((b, s', w), (c, s', w))) (rsmb r s) (rsmc r s) conquer = Lazy.RWST $ \_ _ -> conquer instance Divisible m => Divisible (Strict.RWST r w s m) where divide abc (Strict.RWST rsmb) (Strict.RWST rsmc) = Strict.RWST $ \r s -> divide (\(a, s', w) -> case abc a of (b, c) -> ((b, s', w), (c, s', w))) (rsmb r s) (rsmc r s) conquer = Strict.RWST $ \_ _ -> conquer instance Divisible m => Divisible (Lazy.StateT s m) where divide f (Lazy.StateT l) (Lazy.StateT r) = Lazy.StateT $ \s -> divide (lazyFanout f) (l s) (r s) conquer = Lazy.StateT $ \_ -> conquer instance Divisible m => Divisible (Strict.StateT s m) where divide f (Strict.StateT l) (Strict.StateT r) = Strict.StateT $ \s -> divide (strictFanout f) (l s) (r s) conquer = Strict.StateT $ \_ -> conquer instance Divisible m => Divisible (Lazy.WriterT w m) where divide f (Lazy.WriterT l) (Lazy.WriterT r) = Lazy.WriterT $ divide (lazyFanout f) l r conquer = Lazy.WriterT conquer instance Divisible m => Divisible (Strict.WriterT w m) where divide f (Strict.WriterT l) (Strict.WriterT r) = Strict.WriterT $ divide (strictFanout f) l r conquer = Strict.WriterT conquer instance (Applicative f, Divisible g) => Divisible (Compose f g) where divide f (Compose l) (Compose r) = Compose (divide f <$> l <*> r) conquer = Compose $ pure conquer instance Monoid m => Divisible (Constant m) where divide _ (Constant l) (Constant r) = Constant $ mappend l r conquer = Constant mempty instance (Divisible f, Divisible g) => Divisible (Product f g) where divide f (Pair l1 r1) (Pair l2 r2) = Pair (divide f l1 l2) (divide f r1 r2) conquer = Pair conquer conquer instance Divisible f => Divisible (Reverse f) where divide f (Reverse l) (Reverse r) = Reverse $ divide f l r conquer = Reverse conquer #if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged) instance Divisible Proxy where divide _ Proxy Proxy = Proxy conquer = Proxy #endif #if MIN_VERSION_StateVar instance Divisible SettableStateVar where divide k (SettableStateVar l) (SettableStateVar r) = SettableStateVar $ \ a -> case k a of (b, c) -> l b >> r c conquer = SettableStateVar $ \_ -> return () #endif lazyFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s)) lazyFanout f ~(a, s) = case f a of ~(b, c) -> ((b, s), (c, s)) strictFanout :: (a -> (b, c)) -> (a, s) -> ((b, s), (c, s)) strictFanout f (a, s) = case f a of (b, c) -> ((b, s), (c, s)) funzip :: Functor f => f (a, b) -> (f a, f b) funzip = fmap fst &&& fmap snd -------------------------------------------------------------------------------- -- * Contravariant Alternative -------------------------------------------------------------------------------- -- | -- -- A 'Divisible' contravariant functor is a monoid object in the category of presheaves -- from Hask to Hask, equipped with Day convolution mapping the cartesian product of the -- source to the Cartesian product of the target. -- -- @ -- 'choose' 'Left' m ('lose' f) = m -- 'choose' 'Right' ('lose' f) m = m -- 'choose' f ('choose' g m n) o = 'divide' f' m ('divide' 'id' n o) where -- f' bcd = 'either' ('either' 'id' ('Right' . 'Left') . g) ('Right' . 'Right') . f -- @ -- -- In addition, we expect the same kind of distributive law as is satisfied by the usual -- covariant 'Alternative', w.r.t 'Applicative', which should be fully formulated and -- added here at some point! class Divisible f => Decidable f where -- | The only way to win is not to play. lose :: (a -> Void) -> f a choose :: (a -> Either b c) -> f b -> f c -> f a -- | -- @ -- 'lost' = 'lose' 'id' -- @ lost :: Decidable f => f Void lost = lose id -- | -- @ -- 'chosen' = 'choose' 'id' -- @ chosen :: Decidable f => f b -> f c -> f (Either b c) chosen = choose id instance Decidable Comparison where lose f = Comparison $ \a _ -> absurd (f a) choose f (Comparison g) (Comparison h) = Comparison $ \a b -> case f a of Left c -> case f b of Left d -> g c d Right{} -> LT Right c -> case f b of Left{} -> GT Right d -> h c d instance Decidable Equivalence where lose f = Equivalence $ \a -> absurd (f a) choose f (Equivalence g) (Equivalence h) = Equivalence $ \a b -> case f a of Left c -> case f b of Left d -> g c d Right{} -> False Right c -> case f b of Left{} -> False Right d -> h c d instance Decidable Predicate where lose f = Predicate $ \a -> absurd (f a) choose f (Predicate g) (Predicate h) = Predicate $ either g h . f instance Monoid r => Decidable (Op r) where lose f = Op $ absurd . f choose f (Op g) (Op h) = Op $ either g h . f #if MIN_VERSION_base(4,8,0) instance Decidable f => Decidable (Alt f) where lose = Alt . lose choose f (Alt l) (Alt r) = Alt $ choose f l r #endif #ifdef GHC_GENERICS instance Decidable U1 where lose _ = U1 choose _ U1 U1 = U1 instance Decidable f => Decidable (Rec1 f) where lose = Rec1 . lose choose f (Rec1 l) (Rec1 r) = Rec1 $ choose f l r instance Decidable f => Decidable (M1 i c f) where lose = M1 . lose choose f (M1 l) (M1 r) = M1 $ choose f l r instance (Decidable f, Decidable g) => Decidable (f :*: g) where lose f = lose f :*: lose f choose f (l1 :*: r1) (l2 :*: r2) = choose f l1 l2 :*: choose f r1 r2 instance (Applicative f, Decidable g) => Decidable (f :.: g) where lose = Comp1 . pure . lose choose f (Comp1 l) (Comp1 r) = Comp1 (choose f <$> l <*> r) #endif instance Decidable f => Decidable (Backwards f) where lose = Backwards . lose choose f (Backwards l) (Backwards r) = Backwards $ choose f l r instance Decidable f => Decidable (IdentityT f) where lose = IdentityT . lose choose f (IdentityT l) (IdentityT r) = IdentityT $ choose f l r instance Decidable m => Decidable (ReaderT r m) where lose f = ReaderT $ \_ -> lose f choose abc (ReaderT rmb) (ReaderT rmc) = ReaderT $ \r -> choose abc (rmb r) (rmc r) instance Decidable m => Decidable (Lazy.RWST r w s m) where lose f = Lazy.RWST $ \_ _ -> contramap (\ ~(a, _, _) -> a) (lose f) choose abc (Lazy.RWST rsmb) (Lazy.RWST rsmc) = Lazy.RWST $ \r s -> choose (\ ~(a, s', w) -> either (Left . betuple3 s' w) (Right . betuple3 s' w) (abc a)) (rsmb r s) (rsmc r s) instance Decidable m => Decidable (Strict.RWST r w s m) where lose f = Strict.RWST $ \_ _ -> contramap (\(a, _, _) -> a) (lose f) choose abc (Strict.RWST rsmb) (Strict.RWST rsmc) = Strict.RWST $ \r s -> choose (\(a, s', w) -> either (Left . betuple3 s' w) (Right . betuple3 s' w) (abc a)) (rsmb r s) (rsmc r s) instance Divisible m => Decidable (ListT m) where lose _ = ListT conquer choose f (ListT l) (ListT r) = ListT $ divide ((lefts &&& rights) . map f) l r instance Divisible m => Decidable (MaybeT m) where lose _ = MaybeT conquer choose f (MaybeT l) (MaybeT r) = MaybeT $ divide ( maybe (Nothing, Nothing) (either (\b -> (Just b, Nothing)) (\c -> (Nothing, Just c))) . fmap f) l r instance Decidable m => Decidable (Lazy.StateT s m) where lose f = Lazy.StateT $ \_ -> contramap lazyFst (lose f) choose f (Lazy.StateT l) (Lazy.StateT r) = Lazy.StateT $ \s -> choose (\ ~(a, s') -> either (Left . betuple s') (Right . betuple s') (f a)) (l s) (r s) instance Decidable m => Decidable (Strict.StateT s m) where lose f = Strict.StateT $ \_ -> contramap fst (lose f) choose f (Strict.StateT l) (Strict.StateT r) = Strict.StateT $ \s -> choose (\(a, s') -> either (Left . betuple s') (Right . betuple s') (f a)) (l s) (r s) instance Decidable m => Decidable (Lazy.WriterT w m) where lose f = Lazy.WriterT $ contramap lazyFst (lose f) choose f (Lazy.WriterT l) (Lazy.WriterT r) = Lazy.WriterT $ choose (\ ~(a, s') -> either (Left . betuple s') (Right . betuple s') (f a)) l r instance Decidable m => Decidable (Strict.WriterT w m) where lose f = Strict.WriterT $ contramap fst (lose f) choose f (Strict.WriterT l) (Strict.WriterT r) = Strict.WriterT $ choose (\(a, s') -> either (Left . betuple s') (Right . betuple s') (f a)) l r instance (Applicative f, Decidable g) => Decidable (Compose f g) where lose = Compose . pure . lose choose f (Compose l) (Compose r) = Compose (choose f <$> l <*> r) instance (Decidable f, Decidable g) => Decidable (Product f g) where lose f = Pair (lose f) (lose f) choose f (Pair l1 r1) (Pair l2 r2) = Pair (choose f l1 l2) (choose f r1 r2) instance Decidable f => Decidable (Reverse f) where lose = Reverse . lose choose f (Reverse l) (Reverse r) = Reverse $ choose f l r betuple :: s -> a -> (a, s) betuple s a = (a, s) betuple3 :: s -> w -> a -> (a, s, w) betuple3 s w a = (a, s, w) lazyFst :: (a, b) -> a lazyFst ~(a, _) = a #if MIN_VERSION_base(4,7,0) || defined(MIN_VERSION_tagged) instance Decidable Proxy where lose _ = Proxy choose _ Proxy Proxy = Proxy #endif #if MIN_VERSION_StateVar instance Decidable SettableVar where lose k = SettableStateVar (absurd . k) choose k (SettableStateVar l) (SettableStateVar r) = SettableStateVar $ \ a -> case k a of Left b -> l b Right c -> r c #endif