
CPSA Security Goals and Rules

Joshua D. Guttman and John D. Ramsdell
The MITRE Corporation

CPSA Version 4.2.3

February 17, 2020

Contents

1 Introduction 3

2 Syntax 6

3 Semantics 8

4 Examples 10
4.1 Needham-Schroeder Responder 10
4.2 A Needham-Schroeder Secrecy Goal 12

5 The Rest of the Story 12
5.1 Shape Analysis Sentences . 14

6 Rules 15
6.1 Facts . 15
6.2 DoorSEP . 16

c© 2010 The MITRE Corporation. Permission to copy without fee all or part of
this material is granted provided that the copies are not made or distributed for direct
commercial advantage, this copyright notice and the title of the publication and its date
appear, and notice in given that copying is by permission of The MITRE Corporation.

1

List of Figures

1 Needham-Schroeder Initiator and Responder Roles 4
2 Needham-Schroeder Initiator Point of View 5
3 Needham-Schroeder Responder Point of View 11
4 Needham-Schroeder Secrecy Goal 12
5 Two Initiator Authentication Goals 13
6 Initiator Shape Analysis Sentence 14
7 DoorSEP Protocol . 16
8 DoorSEP Weakness . 17
9 Door Simple Example Protocol 18

List of Tables

1 Predicates . 7

2

1 Introduction

Analyzing a cryptographic protocol means finding out what security
properties—essentially, authentication and secrecy properties—are true in
all its possible executions.

Given a protocol definition and some assumptions about executions, cpsa
attempts to produce descriptions of all possible executions of the protocol
compatible with the assumptions. Naturally, there are infinitely many pos-
sible executions of a useful protocol, since different participants can run it
with varying parameters, and the participants can run it repeatedly.

However, for many naturally occurring protocols, there are only finitely
many of these runs that are essentially different. Indeed, there are frequently
very few, often just one or two, even in cases where the protocol is flawed. We
call these essentially different executions the shapes of the protocol. Authen-
tication and secrecy properties are easy to “read off” from the shapes, as are
attacks and anomalies, according to the introduction in the cpsa Primer [4].

But how easy is it to read off authentication and secrecy properties? What
precisely is it that an expert sees? This paper describes cpsa’s support for
reasoning about security goals using first-order logic. With security goals
expressed in first-order logic, intuition is replaced by determining if a formula
is true in all executions of the protocol.

This treatment of security goals relies heavily on a branch of first-order
logic called model theory. It deals with the relationship between descriptions
in first-order languages and the structures that satisfy these descriptions. In
our case, the structures are skeletons that denote a collection of executions
of a protocol. This paper attempts to describe the language of security goals
and its structures without requiring the reader to have studied model theory.

The model theoretical foundation of this approach to security goals ap-
pears in [1]. A practical use of security goals in protocol standardization is
described in [2]. The precise semantics of the goal language is in [5, Ap-
pendix C]. The syntax of security goals appears in [4, Table 2].

The distribution in which this paper is included contains the sample in-
put cpsa file goals.scm. It contains the examples in this paper. You are
encouraged to run the examples and examine the output while reading this
paper.

The cpsa Primer [4] is a prerequisite for reading this paper. In particular,
the Needham-Schroeder Protocol in Section 10 is reanalyzed using security
goals here. The roles are displayed in Figure 1.

3

•

•

init {|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB
•

•

resp{|N1, A|}KB

{|N1, N2|}KA

{|N2|}KB

(defprotocol ns basic

(defrole init

(vars (a b name) (n1 n2 text))

(trace

(send (enc n1 a (pubk b)))

(recv (enc n1 n2 (pubk a)))

(send (enc n2 (pubk b)))))

(defrole resp

(vars (b a name) (n2 n1 text))

(trace

(recv (enc n1 a (pubk b)))

(send (enc n1 n2 (pubk a)))

(recv (enc n2 (pubk b))))))

Figure 1: Needham-Schroeder Initiator and Responder Roles

4

(defgoal ns ; Goal

(forall ((b name) (n1 text) (z0 strd))

(implies

(and (p "init" z0 3) (p "init" "n1" z0 n1)

(p "init" "b" z0 b) (non (privk b)) (uniq n1))

(exists ((z1 strd))

(and (p "resp" z1 2) (p "resp" "b" z1 b))))))

(defskeleton ns ; Point of view skeleton

(vars (a b name) (n1 n2 text))

(defstrand init 3 (a a) (b b) (n1 n1) (n2 n2))

(non-orig (privk b))

(uniq-orig n1))

•

•

init

•

resp≺

�

{|N1, A|}KB
{|N1, A|}KB

{|N1, N2|}KA
{|N1, N

′
2|}KA

{|N2|}KB

(defskeleton ns ; Shape

(vars (n1 n2 text) (a b name))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b))

(defstrand resp 2 (n2 n2-0) (n1 n1) (b b) (a a))

(precedes ((0 0) (1 0)) ((1 1) (0 1)))

(non-orig (privk b))

(uniq-orig n1)

(satisfies yes))

Figure 2: Needham-Schroeder Initiator Point of View

5

The protocol is analyzed from the point of view of a complete run of
one instance of the initiator role. The input security goal, followed by the
point of view skeleton it generates and the shape produced by cpsa, are
shown in Figure 2. The syntax and semantics of the goal will be explained
later. Roughly speaking, it asserts that if a realized skeleton contains a full
length initiator strand, its private key is uncompromised, and it uniquely
generates n1, then the skeleton will contain a responder strand that agrees
with the initiator on the name b. The shape produced by cpsa contains
the annotation (satisfies yes). This indicates that its structure satisfies
the description given by the security goal. It will be explained later why the
properties of cpsa allows us to conclude that this goal is true in all executions
of the protocol, and therefore conclude that the Needham-Schroeder protocol
achieves this authentication goal.

2 Syntax

To be precise, a security goal is an order-sorted first-order logic sentence
in a restricted form. The sentence in Figure 2 has the form shared by all
security goals. It is a universally quantified implication. The antecedent is
a conjunction of atomic formulas. For this sentence, the conclusion is an
existentially quantified conjunction of atomic formulas, but in general, the
conclusion is a disjunction of existentially quantified conjunctions of atomic
formulas. In what follows, (false) is a synonym for the empty disjunction,
(or).

goal ← (defgoal prot sent+ comments)
sent ← (forall (decl∗) (implies antec concl))

concl ← (false) | existl | (or existl∗)
existl ← (exists (decl∗) antec) | antec
antec ← atomic | (and atomic+)

Variables are declared as they are for roles and skeletons with one excep-
tion, there is a new sort symbol strd for strands. Notice that in the sentence
in Figure 2, variables z0 and z1 have sort strd. Every universally quantified
variable must occur in the antecedent of the implication.

The signature as been expanded to include the natural numbers. A nat-
ural number has sort nat.

6

Symbol Sort Description
p role strd×nat Role strand length
p role param strd×mesg Role parameter
prec strd×nat× strd×nat Precedes
non atom Non-origination
pnon atom Penetrator non-origination
uniq atom Unique origination
uniq-at atom× strd×nat Unique origination on strand
auth chan Authenticated channel
conf chan Confidential channel
= all× all Equality

Table 1: Predicates

The predicates used to construct an atomic formula (atomic) are listed in
Table 1. There are two classes of predicates, protocol specific and protocol
independent predicates, and two kinds of protocol specific predicates, role
strand length and role parameter predicates. Protocol specific predicates are
distinguished from protocol independent predicates by beginning with the
symbol p.

The first line of the table gives the syntax of a role strand length predicate.
It contains two tokens, p and a string that names a role. That is, for role r,
there is a role strand length predicate, p r. Thus (p "init" z0 3) is an
atomic formula using the role strand length predicate for length 3 in the
init role of the protocol in Figure 1.

The second line gives the syntax of a role parameter predicate. It con-
tains three tokens, p, a string that names a role, and a string that names a
role variable. For role r, there is role parameter predicate for each variable
declared by r. Thus (p "init" "n1" z0 n1) is an atomic formula using the
role parameter predicate for parameter n1 in the init role of the protocol.

The empty string names the listener role of a protocol. The role has the
variable x of sort mesg as its only role variable. There are two positions in
the listener role. Its trace is (trace (recv x) (send x)).

When a variable of sort strd occurs in a formula, its length must be
specified using a role strand length formula. When an algebra variable occurs
in a formula, its association with the parameter of some role must be specified
using a role parameter formula.

7

3 Semantics

In a defgoal sentence, the antecedent specifies the point of view skeleton.
We focus on the antecedent. In the example,

(defstrand init 3 (a a) (b b) (n1 n1) (n2 n2))

is extracted from

(and (p "init" z0 3)

(p "init" "n1" z0 n1) (p "init" "b" z0 b)).

Notice that cpsa adds a binding for a and n2 just as it does had

(defstrand init 3 (b b) (n1 n1))

been given as input.
Our aim now is to specify how to decide if a security goal is true in all

possible executions of a protocol. A skeleton defines a set of executions that
contain the skeleton’s structure. We say a skeleton satisfies a formula if the
skeleton contains all of the structure specified by the formula. To decide
if a skeleton satisfies a formula, we decide if it satisfies each of its atomic
formulas, and combine the results using the rules of first-order logic.

Atomic formula (p "init" z0 3) is called a role strand length formula.
A skeleton k satisfies the formula if z0 maps to a strand s in k such that

1. the trace of strand s in k has a length greater than 2, and

2. the trace when truncated to length 3 is an instance of the init role.

Consider the shape in Figure 2. It satisfies (p "init" z0 3) when z0 maps
to 0.

Atomic formula (p "init" "n1" z0 n1) is called a role parameter for-
mula. A skeleton k satisfies the formula if z0 maps to strand s in k, n1 first
occurs in at position i in the trace of the init role, and n1 maps to a message
algebra term t in k such that

1. the trace of strand s in k has a length greater than i,

2. the trace truncated to length i + 1 is an instance of the init role, and

8

3. the truncated trace is compatible with mapping the init role’s "n1" role
variable to t.

The shape in Figure 2 satisfies (p "init" "n1" z0 n1) when z0 maps to 0
and n1 maps to the message algebra term n1.

Collectively, a skeleton satisfies the formula

(and (p "init" z0 3)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(p "init" "n1" z0 n1) (p "init" "n2" z0 n2))

if the skeleton contains the structure specified by

(defstrand init 3 (a a) (b b) (n1 n1) (n2 n2)).

The antecedent in Figure 2 contains two origination assertions. The for-
mula (non (privk b)) is extracted as (privk b). A skeleton k satisfies
the formula if b maps to a message algebra term t in k such that k assumes
that t is non-originating. The unique origination formula for n1 is similarly
extracted.

Putting it all together, the mapping

{n1 7→ n1, n2 7→ n2, a 7→ a, b 7→ b, z0 7→ 0}

shows that the shape in Figure 2 satisfies the antecedent of the security goal.
The prec predicate is used to assert a node precedes another node. The

conclusion in Figure 2 with (prec z1 1 z0 2) added is satisfied by the
shape using the mapping z0 7→ 0 and z1 7→ 1.

The uniq-at predicate is used to assert not only that an atom uniquely
originates, but also the node at which it originates. In the Figure 2 goal, the
(uniq n1) formula could have been replaced by (uniq-at n1 z0 0). The
extracted point of view skeleton is the same.

Recall that our aim in analyzing a protocol is to find out what security
goals are true in all of its possible executions. We are interested in runs of
cpsa that show that when every shape satisfies a goal, it is true in every
execution.

When cpsa performs a shape analysis, every shape it generates refines
the input skeleton. Skeleton refinement is defined in [4, Section 6]. The
definition makes precise the notion of structure containment, as skeleton A
refines skeleton B if and only if A contains the structure of skeleton B.

9

The skeleton k0 extracted from the antecedent of a security goal has the
property that a skeleton refines k0 if and only if it satisfies the antecedent.
A skeleton with this property is called the characteristic skeleton of the
antecedent.

Given a goal Φ, consider a shape analysis starting from the characteris-
tic skeleton k0 of its antecedent. Assume cpsa finds shapes k1, . . . , kn and
that cpsa determines that each ki satisfies Φ. Consider the executions that
contain the structure in k0. cpsa tells us that each execution is in the exe-
cutions that contain the structure of some ki. Furthermore, because k0 is a
characteristic skeleton, each ki satisfies the antecedent of Φ. Executions that
do not contain the structure in k0 do not satisfy the antecedent. Therefore, Φ
is true in all executions of the protocol and maximally informative.

4 Examples

This section contains examples of both authentication and secrecy goals.
The first example shows the feedback the user receives when a shape does
not satisfy a security goal. The second example shows how to use a listener
to state a secrecy goal.

4.1 Needham-Schroeder Responder

Figure 3 contains an analysis of Needham-Schroeder from the point of view
of a complete run of the responder under the assumption that the responder’s
private key is uncompromised and the nonce it generates uniquely originates.

The conclusion of the goal asserts that in an execution compatible with
the point of view, there must be an initiator strand that agrees with the
responder strand on the name b. The shape produced by cpsa is a coun-
terexample to this assertion. Because of this, cpsa annotates the shape with

(satisfies (no (a a) (b b) (n2 n2) (z0 0))).

The annotation includes a variable mapping for the shape that satisfies the
antecedent of the goal but does not satisfy its conclusion. The reason the
shape does not satisfy the goal is because the mapping (b b) maps the
initiator’s b parameter to b, not b-0 as is required to model the shape.

Galvin Lowe identified this authentication failure in Needham-Schroeder
and provided a fix. In the Needham-Schroeder-Lowe Protocol, the name b

10

(defgoal ns ; Goal

(forall ((a b name) (n2 text) (z0 strd))

(implies

(and (p "resp" z0 3) (p "resp" "n2" z0 n2)

(p "resp" "a" z0 a) (p "resp" "b" z0 b)

(non (privk a)) (uniq n2))

(exists ((z1 strd))

(and (p "init" z1 2) (p "init" "b" z1 b))))))

(defskeleton ns ; Point of view skeleton

(vars (a b name) (n1 n2 text))

(defstrand resp 3 (a a) (b b) (n1 n1) (n2 n2))

(non-orig (privk a))

(uniq-orig n2))

•

•

resp

•

•

init

≺

�

{|N1, A|}KB
{|N1, A|}KB′

{|N1, N2|}KA
{|N1, N2|}KA

{|N2|}KB
{|N2|}KB′

(defskeleton ns ; Shape

(vars (n1 n2 text) (a b b-0 name))

(defstrand resp 3 (n2 n2) (n1 n1) (b b) (a a))

(defstrand init 3 (n1 n1) (n2 n2) (a a) (b b-0))

(precedes ((0 1) (1 1)) ((1 2) (0 2)))

(non-orig (privk a))

(uniq-orig n2)

(satisfies (no (a a) (b b) (n2 n2) (z0 0))))

Figure 3: Needham-Schroeder Responder Point of View

11

(defgoal ns

(forall ((a b name) (n1 text) (z0 z1 strd))

(implies

(and (p "init" z0 3) (p "init" "n1" z0 n1)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(p "" z1 1) (p "" "x" z1 n1) ; Listener

(non (privk a)) (non (privk b))

(uniq n1))

(false))))

Figure 4: Needham-Schroeder Secrecy Goal

is included within the encryption in second message of both roles. With this
modification, the shape found by cpsa satisfies the security goal in Figure 3,
so Needham-Schroeder-Lowe achieves this authentication goal.

4.2 A Needham-Schroeder Secrecy Goal

Figure 4 contains an analysis of Needham-Schroeder from the point of view
of a complete run of the initiator under the assumption that the responder’s
and its peer’s private keys are uncompromised and the nonce n1 it generates
uniquely originates. Futhermore, the point of view asserts that the nonce is
leaked using a listener.

(p "" z1 1) (p "" "x" z1 n1) ; Listener

cpsa finds no shapes, so Needham-Schroeder achieves this secrecy goal
and does not leak n1.

5 The Rest of the Story

The examples in the previous section demonstrate the typical way security
goals are analyzed with cpsa. However, there are more features that may
be useful.

A defgoal form may contain more than one sentence. See Figure 5 for
an example. When presented with more than one sentence, cpsa extracts
the point of view skeleton from the first sentence.

12

(defgoal ns

(forall ((a b name) (n text) (z0 strd))

(implies

(and (p "init" z0 2) (p "init" "n1" z0 n)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(non (privk a)) (non (privk b)) (uniq n))

(exists ((z1 strd))

(and (p "resp" z1 2) (p "resp" "b" z1 b)))))

(forall ((a b name) (n text) (z0 strd))

(implies

(and (p "init" z0 2) (p "init" "n1" z0 n)

(p "init" "a" z0 a) (p "init" "b" z0 b)

(non (privk a)) (non (privk b)) (uniq n))

(exists ((z1 strd))

(and (p "resp" z1 2) (p "resp" "a" z1 a))))))

Figure 5: Two Initiator Authentication Goals

It is wise to ensure that the antecedent in every sentence is identical.
When cpsa performs satisfaction-checking on sentence Φ, it only determines
if each shape it finds is satisfied. If the point of view skeleton is not the
characteristic skeleton of the antecedent of Φ, the fact that all skeletons
satisfy Φ cannot be used to conclude that Φ is true in all executions of the
protocol.

cpsa performs satisfaction-checking when an input skeleton in annotated
with one or more security goals. The annotation uses the goals key.

(defskeleton

...

(goals sent+))

The program cpsasas, discussed in the next section, can be used to
generate a formula with an antecedent such that the input skeleton is the
characteristic skeleton of the antecedent.

13

(defgoal ns

(forall ((n1 n2 text) (b a name) (z strd))

(implies

(and (p "init" z 3) (p "init" "n1" z n1)

(p "init" "n2" z n2) (p "init" "a" z a)

(p "init" "b" z b) (non (privk b)) (uniq-at n1 z 0))

(exists ((n2-0 text) (z-0 strd))

(and (p "resp" z-0 2) (p "resp" "n2" z-0 n2-0)

(p "resp" "n1" z-0 n1) (p "resp" "b" z-0 b)

(p "resp" "a" z-0 a) (prec z 0 z-0 0)

(prec z-0 1 z 1))))))

Figure 6: Initiator Shape Analysis Sentence

5.1 Shape Analysis Sentences

A shape analysis sentence expresses all that can be learned from a run of
cpsa as a security goal. If a security goal can be derived from a shape
analysis sentence, then the protocol achieves the security goal, that is, the
goal is true in all executions of the protocol.

The program cpsasas extracts shape analysis sentences from the output
of cpsa. Consider the first example in this paper (Figure 2), which is in the
sample file goals.scm. To generate a maximally informative security goal
from the initiator point of view with ghci and Make.hs, type

$ ghci Make.hs

*Make> sas "goals"

When using GNU make, type “make goals sas.text”. The resulting shape
analysis sentence is displayed in Figure 6.

A shape analysis sentences asserts that either a realized skeleton does
not satisfy its antecedent or it satisfies one or more of the disjuncts in its
conclusion. cpsa has been designed so that this assertion is true. Therefore,
every shape analysis sentence is true in all executions.

A security goal is true in all executions if it can be derived from a shape
analysis sentence [3]. In practice, theorem-proving using shape analysis sen-
tences is rarely employed. It’s clumsy and it requires too much expertise. The
main use of cpsasas is for generating a formula that is edited to become a
desired security goal.

14

6 Rules

Support for rules was introduced in version 4.1 of cpsa.
Each protocol includes a small collection of rules. A rule is a sentence in

the goal language presented in Section 2. Rules are defined after the roles of
a protocol are defined. The syntax of a rule follows.

rule ← (defrule name sent comments)

A rule is an axiom added to a protocol. cpsa uses the axiom as a rewrite
rule to derive zero or more new skeletons from a skeleton produced during a
step. An example of a protocol with a rule is in Figure 9 on Page 18.

The trust rule states that when CPSA finds a person strand of length
at least one, and the inverse of it’s p parameter is non-originating, CPSA
should assume the inverse of it’s d parameter is non-originating.

6.1 Facts

Each skeleton includes a small database of facts. A fact is a named relation
among fact terms. A fact term is either a strand of the skeleton or an algebra
term. A set of facts is defined anywhere after strands are defined using the
facts form. The syntax of facts follows.

facts ← (facts fact∗)
fact ← (symbol fterm∗)

fterm ← mesg | nat

For example, in a skeleton, a user may want to note that strand 0 owns
the private key for a by assuming.

(facts (owns 0 (privk a)))

Facts are most useful when combined with rules. Here is an example of
their combination. Suppose a point of view skeleton has two names, a and b,
and the problem is modeling a situation in which the two names are known
to differ. To enforce this constraint, add

(facts (neq a b))

to the point of view skeleton and the neq rule below to the protocol.

15

person door

Fresh: K
•
��

{|{|K|}P−1 |}D //

•
��

{|T |}Koo

• T //

{|{|K|}P−1 |}D // •
��
•
��

{|T |}Koo

T // •
Fresh: T

Figure 7: DoorSEP Protocol

(defrule neq

(forall ((a mesg))

(implies

(fact neq a a)

(false))))

6.2 DoorSEP

As a motivating scenario consider the Door Simple Example Protocol
(DoorSEP), derived from an expository protocol that was designed to have
a weakness. Despite this, the protocol achieves the needs of an application,
given a trust assumption.

Imagine a door D which is equipped with a badge reader, and a person P
equipped with a badge. When the person swipes the badge, the protocol
executes. Principals such as doors or persons are identified by the public
parts of their key pairs, with D−1 and P−1 being the corresponding private
keys. We write {|M |}K for the encryption of message M with key K. We
represent digital signatures {|M |}P−1 as if they were the result of encrypting
with P ’s private key.

P initiates the exchange by creating a fresh symmetric key K, signing
it, and sending it to the door D encrypted with the door’s public key. D
extracts the symmetric key after checking the signature, freshly generates
a token T , and sends it—encrypted with the symmetric key—back to P .
P demonstrates they are authorized to enter by decrypting the token and
sending it as plaintext to the door. The two roles of DoorSEP are shown in
Fig. 7, where each vertical column displays the behavior of one of the roles.
The cpsa4 encoding of the roles is in Figure 9.

cpsa finds an undesirable execution of DoorSEP. Assume the person’s

16

person door

•
{|{|K|}P−1 |}C // · · ·

{|{|K|}P−1 |}D // •
��
•
��

{|T |}Koo

T // •

Uncompromised: P Fresh: K,T

Figure 8: DoorSEP Weakness

private key P−1 is uncompromised and the door has received the token it
sent out. Then cpsa finds that P freshly created the symmetric key K.
However, nothing ensures that the person meant to open door D. If P ever
initiates a run with a compromised door C, the adversary can perform a
man-in-the-middle attack, decrypting using the compromised key C−1 and
re-encrypting with D’s public key, as elided in the · · · in Fig. 8. To verify
this result with cpsa4, remove the trust axiom in the doorsep protocol in
doc/rules.scm and run cpsa4. Thus, without additional assumptions, the
door cannot authenticate the person requesting entry.

But possibly we can trust the person to swipe her badge only in front of
doors our organization controls. And we can we ensure that our doors have
uncompromised private keys. If so, then the adversary cannot exercise the
flaw.

We regard this as a trust assumption, and we can express it as an axiom:

Trust Assumption 1 If an uncompromised signing key P−1 is used to pre-
pare an instance of the first DoorSEP message, then its owning principal has
ensured that the selected door D has an uncompromised private key.

The responsibility for ensuring the truth of this axiom may be split between
P and the organization controlling D. P makes sure to swipe her badge
only at legitimate doors of the organization’s buildings. The organization
maintains a security posture that protects the corresponding private keys.

Is DoorSEP good enough, assuming the trust axiom? Add the trust
axiom back to the doorsep protocol in doc/rules.scm and see. You should
find that the protocol does its job; namely, ensuring that the door opens only
when an authorized person requests it to open.

17

(defprotocol doorsep basic

(defrole person

(vars (d p akey) (k skey) (t text))

(trace

(send (enc (enc k (invk p)) d))

(recv (enc t k))

(send t)))

(defrole door

(vars (d p akey) (k skey) (t text))

(trace

(recv (enc (enc k (invk p)) d))

(send (enc t k))

(recv t)))

(defrule trust

(forall ((z strd) (p d akey))

(implies

(and (p "person" z 1)

(p "person" "p" z p)

(p "person" "d" z d)

(non (invk p)))

(non (invk d))))

(comment "The trust rule"))

(comment "Doorsep protocol using unnamed asymmetric keys"))

(defskeleton doorsep

(vars (p akey))

(defstrand door 3 (p p))

(non-orig (invk p))

(comment "Analyze from the doors’s perspective"))

Figure 9: Door Simple Example Protocol

18

References

[1] Joshua D. Guttman. Establishing and preserving protocol security goals.
Journal of Computer Security, 22(2):201–267, 2014.

[2] Joshua D. Guttman, Moses D. Liskov, and Paul D. Rowe. Security goals
and evolving standards. In Liqun Chen and Chris Mitchell, editors, Se-
curity Standardization Research, volume 8839 of LNCS, pages 93–110.
Springer, December 2014.

[3] John D. Ramsdell. Deducing security goals from shape analysis sentences.
The MITRE Corporation, April 2012. http://arxiv.org/abs/1204.

0480.

[4] John D. Ramsdell and Joshua D. Guttman. CPSA Primer. The MITRE
Corporation, 2009. In https://github.com/mitre/cpsaexp source dis-
tribution, doc directory.

[5] John D. Ramsdell, Joshua D. Guttman, Moses D. Liskov, and Paul D.
Rowe. The CPSA Specification: A Reduction System for Searching for
Shapes in Cryptographic Protocols. The MITRE Corporation, 2009. In
https://github.com/mitre/cpsaexp source distribution, doc directory.

19

