{-# LANGUAGE ScopedTypeVariables, MonoLocalBinds, FlexibleInstances,CPP #-} {-| Maintainer: Thomas.DuBuisson@gmail.com Stability: beta Portability: portable This module is for instantiating cryptographically strong determinitic random bit generators (DRBGs, aka PRNGs) For the simple use case of using the system random number generator ('System.Crypto.Random') to seed the DRBG: @ g <- newGenIO @ Users needing to provide their own entropy can call 'newGen' directly @ entropy <- getEntropy nrBytes let generator = newGen entropy @ -} module Crypto.Random ( CryptoRandomGen(..) , genInteger , GenError (..) , newGenIO ) where import System.Crypto.Random (getEntropy) import Crypto.Types import Control.Monad (liftM) import qualified Data.ByteString as B import Data.Tagged import Data.Bits (xor, setBit, shiftR, shiftL, (.&.)) import Data.List (foldl') -- |many generators have these error conditions in common data GenError = GenErrorOther String -- ^ Misc | RequestedTooManyBytes -- ^ Requested more bytes than a single pass can generate (ex: genBytes g i | i > 2^(2^32)) | RangeInvalid -- ^ When using @genInteger g (l,h)@ and @logBase 2 (h - l) > (maxBound :: Int)@. | NeedReseed -- ^ Some generators cease operation after too high a count without a reseed (ex: NIST SP 800-90) | NotEnoughEntropy -- ^ For instantiating new generators (or reseeding) deriving (Eq, Ord, Show) #if !MIN_VERSION_base(4,3,0) instance Monad (Either GenError) where return = Right (Left x) >>= _ = Left x (Right x) >>= f = f x #endif -- |A class of random bit generators that allows for the possibility of failure, -- reseeding, providing entropy at the same time as requesting bytes -- -- Minimum complete definition: `newGen`, `genSeedLength`, `genBytes`, `reseed`. class CryptoRandomGen g where -- |Instantiate a new random bit generator newGen :: B.ByteString -> Either GenError g -- |Length of input entropy necessary to instantiate or reseed a generator genSeedLength :: Tagged g ByteLength -- |Obtain random data using a generator genBytes :: g -> ByteLength -> Either GenError (B.ByteString, g) -- |@genBytesWithEntropy g i entropy@ generates @i@ random bytes and use the -- additional input @entropy@ in the generation of the requested data to -- increase the confidence our generated data is a secure random stream. -- -- Default: -- -- @ -- genBytesWithEntropy g bytes entropy = xor entropy (genBytes g bytes) -- @ genBytesWithEntropy :: g -> ByteLength -> B.ByteString -> Either GenError (B.ByteString, g) genBytesWithEntropy g len entropy = let res = genBytes g len in case res of Left err -> Left err Right (bs,g') -> let entropy' = B.append entropy (B.replicate (len - B.length entropy) 0) in Right (zwp' entropy' bs, g') -- |reseed the generator reseed :: g -> B.ByteString -> Either GenError g -- |Use "System.Crypto.Random" to obtain entropy for `newGen`. newGenIO :: CryptoRandomGen g => IO g newGenIO = do let r = undefined l = genSeedLength `for` r res <- liftM newGen (getEntropy l) case res of Left _ -> newGenIO Right g -> return (g `asTypeOf` r) -- |Obtain a tagged value for a particular instantiated type. for :: Tagged a b -> a -> b for t _ = unTagged t -- |@genInteger g (low,high)@ will generate an integer between [low, high] inclusively, swapping the pair if high < low. -- -- This function has degraded (theoretically unbounded, probabilitically decent) performance -- the closer your range size (high - low) is to 2^n (from the top). genInteger :: CryptoRandomGen g => g -> (Integer, Integer) -> Either GenError (Integer, g) genInteger g (low,high) | high < low = genInteger g (high,low) | high == low = Right (high, g) | otherwise = go g where mask = foldl' setBit 0 [0 .. fromIntegral nrBits - 1] nrBits = base2Log range range = high - low nrBytes = (nrBits + 7) `div` 8 go gen = let offset = genBytes gen (fromIntegral nrBytes) in case offset of Left err -> Left err Right (bs,g') -> if nrBytes > fromIntegral (maxBound :: Int) then Left RangeInvalid else let res = low + (bs2i bs .&. mask) in if res > high then go g' else Right (res, g') base2Log :: Integer -> Integer base2Log i | i >= setBit 0 64 = 64 + base2Log (i `shiftR` 64) | i >= setBit 0 32 = 32 + base2Log (i `shiftR` 32) | i >= setBit 0 16 = 16 + base2Log (i `shiftR` 16) | i >= setBit 0 8 = 8 + base2Log (i `shiftR` 8) | i >= setBit 0 0 = 1 + base2Log (i `shiftR` 1) | otherwise = 0 bs2i :: B.ByteString -> Integer bs2i bs = B.foldl' (\i b -> (i `shiftL` 8) + fromIntegral b) 0 bs {-# INLINE bs2i #-} -- |zipWith xor + Pack -- As a result of rewrite rules, this should automatically be optimized (at compile time) -- to use the bytestring libraries 'zipWith'' function. zwp' a = B.pack . B.zipWith xor a {-# INLINE zwp' #-}