{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-} {-| Maintainer: Thomas.DuBuisson@gmail.com Stability: beta Portability: portable This is the heart of the crypto-api package. By making (or having) an instance of Hash, AsymCipher, BlockCipher or StreamCipher you provide (or obtain) access to any infrastructure built on these primitives include block cipher modes of operation, hashing, hmac, signing, etc. These classes allow users to build routines that are agnostic to the algorithm used so changing algorithms is as simple as changing a type signature. -} module Crypto.Classes ( -- * Hash class and helper functions Hash(..) , hashFunc , hashFunc' -- * Cipher classes and helper functions , BlockCipher(..) , blockSizeBytes , keyLengthBytes , buildKeyIO , StreamCipher(..) , buildStreamKeyIO , AsymCipher(..) , buildKeyPairIO , Signing(..) , buildSigningKeyPairIO -- * Misc helper functions , encode , incIV , module Crypto.Util ) where import Data.Serialize import qualified Data.ByteString.Lazy as L import qualified Data.ByteString as B import qualified Data.ByteString.Internal as I import Data.ByteString.Unsafe (unsafeUseAsCStringLen) import Control.Monad.Trans.Class (lift) import Control.Monad.Trans.State (StateT(..), runStateT) import Data.Bits ((.|.), xor, shiftR) import Data.List (foldl', genericDrop) import Data.Word (Word8, Word16, Word64) import Data.Tagged import Crypto.Types import Crypto.Random import Crypto.Util import System.IO.Unsafe (unsafePerformIO) import Foreign (Ptr) import Foreign.C (CChar(..), CInt(..)) import System.Entropy -- |The Hash class is intended as the generic interface -- targeted by maintainers of Haskell digest implementations. -- Using this generic interface, higher level functions -- such as 'hash' and 'hash'' provide a useful API -- for comsumers of hash implementations. -- -- Any instantiated implementation must handle unaligned data. -- -- Minimum complete definition: 'outputLength', 'blockLength', 'initialCtx', -- 'updateCtx', and 'finalize'. class (Serialize d, Eq d, Ord d) => Hash ctx d | d -> ctx, ctx -> d where outputLength :: Tagged d BitLength -- ^ The size of the digest when encoded blockLength :: Tagged d BitLength -- ^ The amount of data operated on in each round of the digest computation initialCtx :: ctx -- ^ An initial context, provided with the first call to 'updateCtx' updateCtx :: ctx -> B.ByteString -> ctx -- ^ Used to update a context, repeatedly called until all data is exhausted -- must operate correctly for imputs of @n*blockLength@ bytes for @n `elem` [0..]@ finalize :: ctx -> B.ByteString -> d -- ^ Finializing a context, plus any message data less than the block size, into a digest -- |Hash a lazy ByteString, creating a digest hash :: (Hash ctx d) => L.ByteString -> d hash msg = res where res = finalize ctx end ctx = foldl' updateCtx initialCtx blks (blks,end) = makeBlocks msg blockLen blockLen = (blockLength .::. res) `div` 8 -- |Hash a strict ByteString, creating a digest hash' :: (Hash ctx d) => B.ByteString -> d hash' msg = res where res = finalize (updateCtx initialCtx top) end (top, end) = B.splitAt remlen msg remlen = B.length msg - (B.length msg `rem` bLen) bLen = blockLength `for` res `div` 8 -- |Obtain a lazy hash function whose result is the same type -- as the given digest, which is discarded. If the type is already inferred then -- consider using the 'hash' function instead. hashFunc :: Hash c d => d -> (L.ByteString -> d) hashFunc d = f where f = hash a = f undefined `asTypeOf` d -- |Obtain a strict hash function whose result is the same type -- as the given digest, which is discarded. If the type is already inferred then -- consider using the 'hash'' function instead. hashFunc' :: Hash c d => d -> (B.ByteString -> d) hashFunc' d = f where f = hash' a = f undefined `asTypeOf` d {-# INLINABLE makeBlocks #-} makeBlocks :: L.ByteString -> ByteLength -> ([B.ByteString], B.ByteString) makeBlocks msg len = go (L.toChunks msg) where go [] = ([],B.empty) go (x:xs) | B.length x >= len = let l = B.length x - B.length x `rem` len (top,end) = B.splitAt l x (rest,trueEnd) = go (end:xs) in (top:rest, trueEnd) | otherwise = case xs of [] -> ([], x) (a:as) -> go (B.append x a : as) -- |The BlockCipher class is intended as the generic interface -- targeted by maintainers of Haskell cipher implementations. -- Using this generic interface higher level functions -- such as 'cbc', and other functions from Data.Crypto.Modes, provide a useful API -- for comsumers of cipher implementations. -- -- Instances must handle unaligned data class ( Serialize k) => BlockCipher k where blockSize :: Tagged k BitLength -- ^ The size of a single block; the smallest unit on which the cipher operates. encryptBlock :: k -> B.ByteString -> B.ByteString -- ^ encrypt data of size @n*blockSize@ where @n `elem` [0..]@ (ecb encryption) decryptBlock :: k -> B.ByteString -> B.ByteString -- ^ decrypt data of size @n*blockSize@ where @n `elem` [0..]@ (ecb decryption) buildKey :: B.ByteString -> Maybe k -- ^ smart constructor for keys from a bytestring. keyLength :: Tagged k BitLength -- ^ length of the cryptographic key -- * Modes of operation over strict bytestrings -- | Electronic Cookbook (encryption) ecb :: k -> B.ByteString -> B.ByteString ecb = modeEcb' -- | Electronic Cookbook (decryption) unEcb :: k -> B.ByteString -> B.ByteString unEcb = modeUnEcb' -- | Cipherblock Chaining (encryption) cbc :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) cbc = modeCbc' -- | Cipherblock Chaining (decryption) unCbc :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) unCbc = modeUnCbc' -- | Counter (encryption) ctr :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) ctr = modeCtr' incIV -- | Counter (decryption) unCtr :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) unCtr = modeUnCtr' incIV -- | Ciphertext feedback (encryption) cfb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) cfb = modeCfb' -- | Ciphertext feedback (decryption) unCfb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) unCfb = modeUnCfb' -- | Output feedback (encryption) ofb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) ofb = modeOfb' -- | Output feedback (decryption) unOfb :: k -> IV k -> B.ByteString -> (B.ByteString, IV k) unOfb = modeUnOfb' -- |The number of bytes in a block cipher block blockSizeBytes :: (BlockCipher k) => Tagged k ByteLength blockSizeBytes = fmap (`div` 8) blockSize -- |The number of bytes in a block cipher key (assuming it is an even -- multiple of 8 bits) keyLengthBytes :: (BlockCipher k) => Tagged k ByteLength keyLengthBytes = fmap (`div` 8) keyLength -- |Build a symmetric key using the system entropy (see 'System.Crypto.Random') buildKeyIO :: (BlockCipher k) => IO k buildKeyIO = buildKeyM getEntropy fail -- |Build a symmetric key using a given 'Crypto.Random.CryptoRandomGen' buildKeyGen :: (BlockCipher k, CryptoRandomGen g) => g -> Either GenError (k, g) buildKeyGen = runStateT (buildKeyM (StateT . genBytes) (lift . Left . GenErrorOther)) buildKeyM :: (BlockCipher k, Monad m) => (Int -> m B.ByteString) -> (String -> m k) -> m k buildKeyM getMore err = go (0::Int) where go 1000 = err "Tried 1000 times to generate a key from the system entropy.\ \ No keys were returned! Perhaps the system entropy is broken\ \ or perhaps the BlockCipher instance being used has a non-flat\ \ keyspace." go i = do let bs = keyLength kd <- getMore ((7 + untag bs) `div` 8) case buildKey kd of Nothing -> go (i+1) Just k -> return $ k `asTaggedTypeOf` bs -- |Asymetric ciphers (common ones being RSA or EC based) class (Serialize p, Serialize v) => AsymCipher p v | p -> v, v -> p where buildKeyPair :: CryptoRandomGen g => g -> BitLength -> Either GenError ((p,v),g) -- ^ build a public/private key pair using the provided generator encryptAsym :: (CryptoRandomGen g) => g -> p -> B.ByteString -> Either GenError (B.ByteString,g) -- ^ Asymetric encryption decryptAsym :: v -> B.ByteString -> Maybe B.ByteString -- ^ Asymetric decryption publicKeyLength :: p -> BitLength privateKeyLength :: v -> BitLength -- |Build a pair of asymmetric keys using the system random generator. buildKeyPairIO :: AsymCipher p v => BitLength -> IO (Either GenError (p,v)) buildKeyPairIO bl = do g <- newGenIO :: IO SystemRandom case buildKeyPair g bl of Left err -> return (Left err) Right (k,_) -> return (Right k) -- |Flipped 'buildKeyPair' for ease of use with state monads. buildKeyPairGen :: (CryptoRandomGen g, AsymCipher p v) => BitLength -> g -> Either GenError ((p,v),g) buildKeyPairGen = flip buildKeyPair -- | A stream cipher class. Instance are expected to work on messages as small as one byte -- The length of the resulting cipher text should be equal -- to the length of the input message. class (Serialize k) => StreamCipher k iv | k -> iv where buildStreamKey :: B.ByteString -> Maybe k encryptStream :: k -> iv -> B.ByteString -> (B.ByteString, iv) decryptStream :: k -> iv -> B.ByteString -> (B.ByteString, iv) streamKeyLength :: Tagged k BitLength -- |Build a stream key using the system random generator buildStreamKeyIO :: StreamCipher k iv => IO k buildStreamKeyIO = buildStreamKeyM getEntropy fail -- |Build a stream key using the provided random generator buildStreamKeyGen :: (StreamCipher k iv, CryptoRandomGen g) => g -> Either GenError (k, g) buildStreamKeyGen = runStateT (buildStreamKeyM (StateT . genBytes) (lift . Left . GenErrorOther)) buildStreamKeyM :: (Monad m, StreamCipher k iv) => (Int -> m B.ByteString) -> (String -> m k) -> m k buildStreamKeyM getMore err = go (0::Int) where go 1000 = err "Tried 1000 times to generate a stream key from the system entropy.\ \ No keys were returned! Perhaps the system entropy is broken\ \ or perhaps the BlockCipher instance being used has a non-flat\ \ keyspace." go i = do let k = streamKeyLength kd <- getMore ((untag k + 7) `div` 8) case buildStreamKey kd of Nothing -> go (i+1) Just k' -> return $ k' `asTaggedTypeOf` k -- | A class for signing operations which inherently can not be as generic -- as asymetric ciphers (ex: DSA). class (Serialize p, Serialize v) => Signing p v | p -> v, v -> p where sign :: CryptoRandomGen g => g -> v -> L.ByteString -> Either GenError (B.ByteString, g) verify :: p -> L.ByteString -> B.ByteString -> Bool buildSigningPair :: CryptoRandomGen g => g -> BitLength -> Either GenError ((p, v), g) signingKeyLength :: v -> BitLength verifyingKeyLength :: p -> BitLength -- |Build a signing key using the system random generator buildSigningKeyPairIO :: (Signing p v) => BitLength -> IO (Either GenError (p,v)) buildSigningKeyPairIO bl = do g <- newGenIO :: IO SystemRandom case buildSigningPair g bl of Left err -> return $ Left err Right (k,_) -> return $ Right k -- |Flipped 'buildSigningPair' for ease of use with state monads. buildSigningKeyPairGen :: (Signing p v, CryptoRandomGen g) => BitLength -> g -> Either GenError ((p, v), g) buildSigningKeyPairGen = flip buildSigningPair -- | Like `ecb` but for strict bytestrings modeEcb' :: BlockCipher k => k -> B.ByteString -> B.ByteString modeEcb' k msg = let chunks = chunkFor' k msg in B.concat $ map (encryptBlock k) chunks {-# INLINE modeEcb' #-} -- |Decryption complement to `ecb'` modeUnEcb' :: BlockCipher k => k -> B.ByteString -> B.ByteString modeUnEcb' k ct = let chunks = chunkFor' k ct in B.concat $ map (decryptBlock k) chunks {-# INLINE modeUnEcb' #-} -- |Cipher block chaining encryption mode on strict bytestrings modeCbc' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeCbc' k (IV v) plaintext = let blks = chunkFor' k plaintext (cts, iv) = go blks v in (B.concat cts, IV iv) where go [] iv = ([], iv) go (b:bs) iv = let c = encryptBlock k (zwp' iv b) (cs, ivFinal) = go bs c in (c:cs, ivFinal) {-# INLINEABLE modeCbc' #-} -- |Cipher block chaining decryption for strict bytestrings modeUnCbc' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeUnCbc' k (IV v) ciphertext = let blks = chunkFor' k ciphertext (pts, iv) = go blks v in (B.concat pts, IV iv) where go [] iv = ([], iv) go (c:cs) iv = let p = zwp' (decryptBlock k c) iv (ps, ivFinal) = go cs c in (p:ps, ivFinal) {-# INLINEABLE modeUnCbc' #-} -- |Output feedback mode for strict bytestrings modeOfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeOfb' = modeUnOfb' {-# INLINEABLE modeOfb' #-} -- |Output feedback mode for strict bytestrings modeUnOfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeUnOfb' k (IV iv) msg = let ivStr = collect (B.length msg + ivLen) (drop 1 (iterate (encryptBlock k) iv)) ivLen = B.length iv mLen = fromIntegral (B.length msg) newIV = IV . B.concat . L.toChunks . L.take (fromIntegral ivLen) . L.drop mLen . L.fromChunks $ ivStr in (zwp' (B.concat ivStr) msg, newIV) {-# INLINEABLE modeUnOfb' #-} -- |Counter mode for strict bytestrings modeCtr' :: BlockCipher k => (IV k -> IV k) -> k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeCtr' = modeUnCtr' {-# INLINEABLE modeCtr' #-} -- |Counter mode for strict bytestrings modeUnCtr' :: BlockCipher k => (IV k -> IV k) -> k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeUnCtr' f k iv msg = let fa (st,IV iv) c | B.null st = fa (encryptBlock k iv, f (IV iv)) c | otherwise = let Just (s,nst) = B.uncons st in ((nst,IV iv),xor c s) ((_,newIV),res) = B.mapAccumL fa (B.empty,iv) msg in (res,newIV) {-# INLINEABLE modeUnCtr' #-} -- |Ciphertext feed-back encryption mode for strict bytestrings (with -- s == blockSize) modeCfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeCfb' k (IV v) msg = let blks = chunkFor' k msg (cs,ivF) = go v blks in (B.concat cs, IV ivF) where go iv [] = ([],iv) go iv (b:bs) = let c = zwp' (encryptBlock k iv) b (cs,ivFinal) = go c bs in (c:cs, ivFinal) {-# INLINEABLE modeCfb' #-} -- |Ciphertext feed-back decryption mode for strict bytestrings (with s == blockSize) modeUnCfb' :: BlockCipher k => k -> IV k -> B.ByteString -> (B.ByteString, IV k) modeUnCfb' k (IV v) msg = let blks = chunkFor' k msg (ps, ivF) = go v blks in (B.concat ps, IV ivF) where go iv [] = ([], iv) go iv (b:bs) = let p = zwp' (encryptBlock k iv) b (ps, ivF) = go b bs in (p:ps, ivF) {-# INLINEABLE modeUnCfb' #-} chunkFor' :: (BlockCipher k) => k -> B.ByteString -> [B.ByteString] chunkFor' k = go where blkSz = (blockSize `for` k) `div` 8 go bs | B.length bs < blkSz = [] | otherwise = let (blk,rest) = B.splitAt blkSz bs in blk : go rest {-# INLINE chunkFor' #-} -- |Increase an `IV` by one. This is way faster than decoding, -- increasing, encoding incIV :: BlockCipher k => IV k -> IV k incIV (IV b) = IV $ snd $ B.mapAccumR (incw) 1 b where incw :: Word16 -> Word8 -> (Word16, Word8) incw i w = let nw=i+(fromIntegral w) in (shiftR nw 8, fromIntegral nw) -- gather a specified number of bytes from the list of bytestrings collect :: Int -> [B.ByteString] -> [B.ByteString] collect 0 _ = [] collect _ [] = [] collect i (b:bs) | len < i = b : collect (i - len) bs | len >= i = [B.take i b] where len = B.length b {-# INLINE collect #-}