-- | -- Module : Crypto.PubKey.RSA -- License : BSD-style -- Maintainer : Vincent Hanquez -- Stability : experimental -- Portability : Good -- module Crypto.PubKey.RSA ( Error(..) , PublicKey(..) , PrivateKey(..) , Blinder(..) -- * generation function , generateWith , generate , generateBlinder ) where import Crypto.Random.API import Crypto.Types.PubKey.RSA import Crypto.Number.ModArithmetic (inverse, inverseCoprimes) import Crypto.Number.Generate (generateMax) import Crypto.Number.Prime (generatePrime) import Crypto.PubKey.RSA.Types -- | Generate a key pair given p and q. -- -- p and q need to be distinct prime numbers. -- -- e need to be coprime to phi=(p-1)*(q-1). If that's not the -- case, the function will not return a key pair. -- A small hamming weight results in better performance. -- -- * e=0x10001 is a popular choice -- -- * e=3 is popular as well, but proven to not be as secure for some cases. -- generateWith :: (Integer, Integer) -- ^ chosen distinct primes p and q -> Int -- ^ size in bytes -> Integer -- ^ RSA public exponant 'e' -> Maybe (PublicKey, PrivateKey) generateWith (p,q) size e = case inverse e phi of Nothing -> Nothing Just d -> Just (pub,priv d) where n = p*q phi = (p-1)*(q-1) -- q and p should be *distinct* *prime* numbers, hence always coprime qinv = inverseCoprimes q p pub = PublicKey { public_size = size , public_n = n , public_e = e } priv d = PrivateKey { private_pub = pub , private_d = d , private_p = p , private_q = q , private_dP = d `mod` (p-1) , private_dQ = d `mod` (q-1) , private_qinv = qinv } -- | generate a pair of (private, public) key of size in bytes. generate :: CPRG g => g -- ^ CPRG -> Int -- ^ size in bytes -> Integer -- ^ RSA public exponant 'e' -> ((PublicKey, PrivateKey), g) generate rng size e = loop rng where loop g = -- loop until we find a valid key pair given e let (pq, g') = generatePQ g in case generateWith pq size e of Nothing -> loop g' Just pp -> (pp, g') generatePQ g = let (p, g') = generatePrime g (8 * (size `div` 2)) (q, g'') = generateQ p g' in ((p,q), g'') generateQ p h = let (q, h') = generatePrime h (8 * (size - (size `div` 2))) in if p == q then generateQ p h' else (q, h') -- | Generate a blinder to use with decryption and signing operation -- -- the unique parameter apart from the random number generator is the -- public key value N. generateBlinder :: CPRG g => g -- ^ CPRG to use. -> Integer -- ^ RSA public N parameter. -> (Blinder, g) generateBlinder rng n = (Blinder r (inverseCoprimes r n), rng') where (r, rng') = generateMax rng n