-- |
-- Module      : Crypto.Cipher.Camellia
-- License     : BSD-style
-- Maintainer  : Vincent Hanquez <vincent@snarc.org>
-- Stability   : experimental
-- Portability : Good
--
-- this only cover Camellia 128 bits for now, API will change once
-- 192 and 256 mode are implemented too

module Crypto.Cipher.Camellia (
	Key(..),
	initKey,
	encrypt,
	decrypt
	) where

import Data.Word
import Data.Vector.Unboxed
import Data.Bits
import qualified Data.ByteString as B

data Mode = Decrypt | Encrypt

-- should probably use crypto large word ?
data Word128 = Word128 !Word64 !Word64 deriving (Show, Eq)

w128tow64 :: Word128 -> (Word64, Word64)
w128tow64 (Word128 w1 w2) = (w1, w2)

w64tow128 :: (Word64, Word64) -> Word128
w64tow128 (x1, x2) = Word128 x1 x2

w64tow8 :: Word64 -> (Word8, Word8, Word8, Word8, Word8, Word8, Word8, Word8)
w64tow8 x = (t1, t2, t3, t4, t5, t6, t7, t8)
	where
		t1 = fromIntegral (x `shiftR` 56)
		t2 = fromIntegral (x `shiftR` 48)
		t3 = fromIntegral (x `shiftR` 40)
		t4 = fromIntegral (x `shiftR` 32)
		t5 = fromIntegral (x `shiftR` 24)
		t6 = fromIntegral (x `shiftR` 16)
		t7 = fromIntegral (x `shiftR` 8)
		t8 = fromIntegral (x)

w8tow64 :: (Word8, Word8, Word8, Word8, Word8, Word8, Word8, Word8) -> Word64
w8tow64 (t1, t2, t3, t4, t5, t6, t7, t8) =
	(sh t1 56 .|. sh t2 48 .|. sh t3 40 .|. sh t4 32 .|. sh t5 24 .|. sh t6 16 .|. sh t7 8 .|. sh t8 0)
	where sh i r = (fromIntegral i) `shiftL` r

w64tow32 :: Word64 -> (Word32, Word32)
w64tow32 w = (fromIntegral (w `shiftR` 32), fromIntegral (w .&. 0xffffffff))

w32tow64 :: (Word32, Word32) -> Word64
w32tow64 (x1, x2) = ((fromIntegral x1) `shiftL` 32) .|. (fromIntegral x2)

w128tow8 :: Word128 -> [Word8]
w128tow8 (Word128 x1 x2) = [t1,t2,t3,t4,t5,t6,t7,t8,u1,u2,u3,u4,u5,u6,u7,u8]
	where
		(t1, t2, t3, t4, t5, t6, t7, t8) = w64tow8 x1
		(u1, u2, u3, u4, u5, u6, u7, u8) = w64tow8 x2

getWord64 :: B.ByteString -> Word64
getWord64 s = sh 0 56 .|. sh 1 48 .|. sh 2 40 .|. sh 3 32 .|. sh 4 24 .|. sh 5 16 .|. sh 6 8 .|. sh 7 0
	where
		sh i l = (fromIntegral (s `B.index` i) `shiftL` l)

getWord128 :: B.ByteString -> Word128
getWord128 s = Word128 (getWord64 s) (getWord64 (B.drop 8 s))

putWord128 :: Word128 -> B.ByteString
putWord128 = B.pack . w128tow8

sbox :: Vector Word8
sbox = fromList
	[112,130, 44,236,179, 39,192,229,228,133, 87, 53,234, 12,174, 65
	, 35,239,107,147, 69, 25,165, 33,237, 14, 79, 78, 29,101,146,189
	,134,184,175,143,124,235, 31,206, 62, 48,220, 95, 94,197, 11, 26
	,166,225, 57,202,213, 71, 93, 61,217,  1, 90,214, 81, 86,108, 77
	,139, 13,154,102,251,204,176, 45,116, 18, 43, 32,240,177,132,153
	,223, 76,203,194, 52,126,118,  5,109,183,169, 49,209, 23,  4,215
	, 20, 88, 58, 97,222, 27, 17, 28, 50, 15,156, 22, 83, 24,242, 34
	,254, 68,207,178,195,181,122,145, 36,  8,232,168, 96,252,105, 80
	,170,208,160,125,161,137, 98,151, 84, 91, 30,149,224,255,100,210
	, 16,196,  0, 72,163,247,117,219,138,  3,230,218,  9, 63,221,148
	,135, 92,131,  2,205, 74,144, 51,115,103,246,243,157,127,191,226
	, 82,155,216, 38,200, 55,198, 59,129,150,111, 75, 19,190, 99, 46
	,233,121,167,140,159,110,188,142, 41,245,249,182, 47,253,180, 89
	,120,152,  6,106,231, 70,113,186,212, 37,171, 66,136,162,141,250
	,114,  7,185, 85,248,238,172, 10, 54, 73, 42,104, 60, 56,241,164
	, 64, 40,211,123,187,201, 67,193, 21,227,173,244,119,199,128,158
	]

sbox1 :: Word8 -> Word8
sbox1 x = sbox ! (fromIntegral x)

sbox2 :: Word8 -> Word8
sbox2 x = sbox1 x `rotateL` 1;

sbox3 :: Word8 -> Word8
sbox3 x = sbox1 x `rotateL` 7;

sbox4 :: Word8 -> Word8
sbox4 x = sbox1 (x `rotateL` 1);

sigma1 :: Word64
sigma1 = 0xA09E667F3BCC908B

sigma2 :: Word64
sigma2 = 0xB67AE8584CAA73B2

sigma3 :: Word64
sigma3 = 0xC6EF372FE94F82BE

sigma4 :: Word64
sigma4 = 0x54FF53A5F1D36F1C

sigma5 :: Word64
sigma5 = 0x10E527FADE682D1D

sigma6 :: Word64
sigma6 = 0xB05688C2B3E6C1FD

rotl128 :: Word128 -> Int -> Word128
rotl128 v               0  = v
rotl128 (Word128 x1 x2) 64 = Word128 x2 x1

rotl128 v@(Word128 x1 x2) w
	| w > 64    = (v `rotl128` 64) `rotl128` (w - 64)
	| otherwise = Word128 (x1high .|. x2low) (x2high .|. x1low)
		where
			splitBits i = (i .&. complement x, i .&. x)
				where x = 2 ^ w - 1
			(x1high, x1low) = splitBits (x1 `rotateL` w)
			(x2high, x2low) = splitBits (x2 `rotateL` w)

data Key = Key
	{ k :: Vector Word64
	, kw :: Vector Word64
	, ke :: Vector Word64 }
	deriving (Show)

setKeyInterim :: [Word8] -> (Word128, Word128, Word128, Word128)
setKeyInterim [a0,a1,a2,a3,a4,a5,a6,a7,b0,b1,b2,b3,b4,b5,b6,b7] =
	let kL = (w8tow64 (a0,a1,a2,a3,a4,a5,a6,a7), w8tow64 (b0,b1,b2,b3,b4,b5,b6,b7)) in
	let kR = (0, 0) in

	let kA =
		let d1 = (fst kL `xor` fst kR) in
		let d2 = (snd kL `xor` snd kR) in

		let d3 = d2 `xor` feistel d1 sigma1 in
		let d4 = d1 `xor` feistel d3 sigma2 in
		let d5 = d4 `xor` (fst kL) in
		let d6 = d3 `xor` (snd kL) in
		let d7 = d6 `xor` feistel d5 sigma3 in
		let d8 = d5 `xor` feistel d7 sigma4 in
		(d8, d7)
		in

	let kB =
		let d1 = (fst kA `xor` fst kR) in
		let d2 = (snd kA `xor` snd kR) in

		let d3 = d2 `xor` feistel d1 sigma5 in
		let d4 = d1 `xor` feistel d3 sigma6 in
		(d4, d3)
		in
	(w64tow128 kL, w64tow128 kR, w64tow128 kA, w64tow128 kB)

setKeyInterim _ = error "wrong size key"

initKey :: [Word8] -> Either String Key
initKey l =
	let (kL, _, kA, _) = setKeyInterim l in

	let (kw1, kw2) = w128tow64 (kL `rotl128` 0) in
	let (k1, k2)   = w128tow64 (kA `rotl128` 0) in
	let (k3, k4)   = w128tow64 (kL `rotl128` 15) in
	let (k5, k6)   = w128tow64 (kA `rotl128` 15) in
	let (ke1, ke2) = w128tow64 (kA `rotl128` 30) in --ke1 = (KA <<<  30) >> 64; ke2 = (KA <<<  30) & MASK64;
	let (k7, k8)   = w128tow64 (kL `rotl128` 45) in --k7  = (KL <<<  45) >> 64; k8  = (KL <<<  45) & MASK64;
	let (k9, _)    = w128tow64 (kA `rotl128` 45) in --k9  = (KA <<<  45) >> 64;
	let (_, k10)   = w128tow64 (kL `rotl128` 60) in
	let (k11, k12) = w128tow64 (kA `rotl128` 60) in
	let (ke3, ke4) = w128tow64 (kL `rotl128` 77) in
	let (k13, k14) = w128tow64 (kL `rotl128` 94) in
	let (k15, k16) = w128tow64 (kA `rotl128` 94) in
	let (k17, k18) = w128tow64 (kL `rotl128` 111) in
	let (kw3, kw4) = w128tow64 (kA `rotl128` 111) in

	Right $ Key
		{ kw = fromList [ kw1, kw2, kw3, kw4 ]
		, ke = fromList [ ke1, ke2, ke3, ke4 ]
		, k  = fromList [ k1, k2, k3, k4, k5, k6, k7, k8, k9,
		                  k10, k11, k12, k13, k14, k15, k16, k17, k18 ]
		}

feistel :: Word64 -> Word64 -> Word64
feistel fin sk = 
	let x = fin `xor` sk in
	let (t1, t2, t3, t4, t5, t6, t7, t8) = w64tow8 x in
	let t1' = sbox1 t1 in
	let t2' = sbox2 t2 in
	let t3' = sbox3 t3 in
	let t4' = sbox4 t4 in
	let t5' = sbox2 t5 in
	let t6' = sbox3 t6 in
	let t7' = sbox4 t7 in
	let t8' = sbox1 t8 in
	let y1 = t1' `xor` t3' `xor` t4' `xor` t6' `xor` t7' `xor` t8' in
	let y2 = t1' `xor` t2' `xor` t4' `xor` t5' `xor` t7' `xor` t8' in
	let y3 = t1' `xor` t2' `xor` t3' `xor` t5' `xor` t6' `xor` t8' in
	let y4 = t2' `xor` t3' `xor` t4' `xor` t5' `xor` t6' `xor` t7' in
	let y5 = t1' `xor` t2' `xor` t6' `xor` t7' `xor` t8' in
	let y6 = t2' `xor` t3' `xor` t5' `xor` t7' `xor` t8' in
	let y7 = t3' `xor` t4' `xor` t5' `xor` t6' `xor` t8' in
	let y8 = t1' `xor` t4' `xor` t5' `xor` t6' `xor` t7' in
	w8tow64 (y1, y2, y3, y4, y5, y6, y7, y8)

fl :: Word64 -> Word64 -> Word64
fl fin sk =
	let (x1, x2) = w64tow32 fin in
	let (k1, k2) = w64tow32 sk in
	let y2 = x2 `xor` ((x1 .&. k1) `rotateL` 1) in
	let y1 = x1 `xor` (y2 .|. k2) in
	w32tow64 (y1, y2)

flinv :: Word64 -> Word64 -> Word64
flinv fin sk =
	let (y1, y2) = w64tow32 fin in
	let (k1, k2) = w64tow32 sk in
	let x1 = y1 `xor` (y2 .|. k2) in
	let x2 = y2 `xor` ((x1 .&. k1) `rotateL` 1) in
	w32tow64 (x1, x2)

{- in decrypt mode 0->17 1->16 ... -}
getKeyK :: Mode -> Key -> Int -> Word64
getKeyK Encrypt key i = k key ! i
getKeyK Decrypt key i = k key ! (17 - i)

{- in decrypt mode 0->3 1->2 2->1 3->0 -}
getKeyKe :: Mode -> Key -> Int -> Word64
getKeyKe Encrypt key i = ke key ! i
getKeyKe Decrypt key i = ke key ! (3 - i)

{- in decrypt mode 0->2 1->3 2->0 3->1 -}
getKeyKw :: Mode -> Key -> Int -> Word64
getKeyKw Encrypt key i = kw key ! i
getKeyKw Decrypt key i = kw key ! ((i + 2) `mod` 4)

{- perform the following
	D2 = D2 ^ F(D1, k1);     // Round 1
	D1 = D1 ^ F(D2, k2);     // Round 2
	D2 = D2 ^ F(D1, k3);     // Round 3
	D1 = D1 ^ F(D2, k4);     // Round 4
	D2 = D2 ^ F(D1, k5);     // Round 5
	D1 = D1 ^ F(D2, k6);     // Round 6
 -}
doBlockRound :: Mode -> Key -> Word64 -> Word64 -> Int -> (Word64, Word64)
doBlockRound mode key d1 d2 i =
	let r1 = d2 `xor` feistel d1 (getKeyK mode key (0+i)) in     {- Round 1+i -}
	let r2 = d1 `xor` feistel r1 (getKeyK mode key (1+i)) in     {- Round 2+i -}
	let r3 = r1 `xor` feistel r2 (getKeyK mode key (2+i)) in     {- Round 3+i -}
	let r4 = r2 `xor` feistel r3 (getKeyK mode key (3+i)) in     {- Round 4+i -}
	let r5 = r3 `xor` feistel r4 (getKeyK mode key (4+i)) in     {- Round 5+i -}
	let r6 = r4 `xor` feistel r5 (getKeyK mode key (5+i)) in     {- Round 6+i -}
	(r6, r5)

doBlock :: Mode -> Key -> Word128 -> Word128
doBlock mode key m =
	let (d1, d2) = w128tow64 m in

	let d1a = d1 `xor` (getKeyKw mode key 0) in {- Prewhitening -}
	let d2a = d2 `xor` (getKeyKw mode key 1) in

	let (d1b, d2b) = doBlockRound mode key d1a d2a 0 in

	let d1c = fl    d1b (getKeyKe mode key 0) in {- FL -}
	let d2c = flinv d2b (getKeyKe mode key 1) in {- FLINV -}

	let (d1d, d2d) = doBlockRound mode key d1c d2c 6 in

	let d1e = fl    d1d (getKeyKe mode key 2) in {- FL -}
	let d2e = flinv d2d (getKeyKe mode key 3) in {- FLINV -}

	let (d1f, d2f) = doBlockRound mode key d1e d2e 12 in

	let d2g = d2f `xor` (getKeyKw mode key 2) in {- Postwhitening -}
	let d1g = d1f `xor` (getKeyKw mode key 3) in
	w64tow128 (d2g, d1g)

{- encryption for 128 bits blocks -}
encryptBlock :: Key -> Word128 -> Word128
encryptBlock = doBlock Encrypt

{- decryption for 128 bits blocks -}
decryptBlock :: Key -> Word128 -> Word128
decryptBlock = doBlock Decrypt

encryptChunk :: Key -> B.ByteString -> B.ByteString
encryptChunk key b = putWord128 $ encryptBlock key $ getWord128 b

decryptChunk :: Key -> B.ByteString -> B.ByteString
decryptChunk key b = putWord128 $ decryptBlock key $ getWord128 b

doChunks :: (B.ByteString -> B.ByteString) -> B.ByteString -> [B.ByteString]
doChunks f b =
	let (x, rest) = B.splitAt 16 b in
	if B.length rest >= 16
		then f x : doChunks f rest
		else [ f x ]

{- | encrypt with the key a bytestring and returns the encrypted bytestring -}
encrypt :: Key -> B.ByteString -> B.ByteString
encrypt key b = B.concat $ doChunks (encryptChunk key) b

{- | decrypt with the key a bytestring and returns the encrypted bytestring -}
decrypt :: Key -> B.ByteString -> B.ByteString
decrypt key b = B.concat $ doChunks (decryptChunk key) b