-- | -- Module : $Header$ -- Copyright : (c) 2013-2015 Galois, Inc. -- License : BSD3 -- Maintainer : cryptol@galois.com -- Stability : provisional -- Portability : portable {-# LANGUAGE CPP #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE BangPatterns #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Cryptol.Prims.Eval where import Cryptol.Prims.Syntax (ECon(..)) import Cryptol.TypeCheck.AST import Cryptol.TypeCheck.Solver.InfNat (Nat'(..),fromNat,genLog, nMul) import qualified Cryptol.Eval.Arch as Arch import Cryptol.Eval.Error import Cryptol.Eval.Type(evalTF) import Cryptol.Eval.Value import Cryptol.Testing.Random (randomValue) import Cryptol.Utils.Panic (panic) import Data.List (sortBy,transpose,genericTake,genericReplicate,genericSplitAt,genericIndex) import Data.Ord (comparing) import Data.Bits (Bits(..)) import System.Random.TF (mkTFGen) -- Utilities ------------------------------------------------------------------- #if __GLASGOW_HASKELL__ < 706 noNum = panic "Cryptol.Prims.Eval" [ "Num instance for Bool shouldn't be used." ] instance Num Bool where _ + _ = noNum _ * _ = noNum _ - _ = noNum negate _ = noNum abs _ = noNum signum _ = noNum fromInteger _ = noNum #endif #if __GLASGOW_HASKELL__ < 708 instance Bits Bool where (.&.) = (&&) (.|.) = (||) xor = (/=) complement = not shift a 0 = a shift _ _ = False rotate a _ = a bitSize _ = 1 isSigned _ = False testBit a 1 = a testBit _ _ = False bit 0 = True bit _ = False popCount a = if a then 1 else 0 #endif -- Primitives ------------------------------------------------------------------ evalECon :: ECon -> Value evalECon ec = case ec of ECFalse -> VBit False ECTrue -> VBit True ECPlus -> binary (arithBinary (liftBinArith (+))) ECMinus -> binary (arithBinary (liftBinArith (-))) ECMul -> binary (arithBinary (liftBinArith (*))) ECDiv -> binary (arithBinary (liftBinArith divWrap)) ECMod -> binary (arithBinary (liftBinArith modWrap)) ECExp -> binary (arithBinary modExp) ECLg2 -> unary (arithUnary lg2) ECNeg -> unary (arithUnary negate) ECLt -> binary (cmpOrder (\o -> o == LT )) ECGt -> binary (cmpOrder (\o -> o == GT )) ECLtEq -> binary (cmpOrder (\o -> o == LT || o == EQ)) ECGtEq -> binary (cmpOrder (\o -> o == GT || o == EQ)) ECEq -> binary (cmpOrder (\o -> o == EQ)) ECNotEq -> binary (cmpOrder (\o -> o /= EQ)) ECMin -> binary (withOrder minV) ECMax -> binary (withOrder maxV) ECAnd -> binary (logicBinary (.&.)) ECOr -> binary (logicBinary (.|.)) ECXor -> binary (logicBinary xor) ECCompl -> unary (logicUnary complement) ECShiftL -> logicShift shiftLW shiftLS ECShiftR -> logicShift shiftRW shiftRS ECRotL -> logicShift rotateLW rotateLS ECRotR -> logicShift rotateRW rotateRS ECDemote -> ecDemoteV ECCat -> tlam $ \ front -> tlam $ \ back -> tlam $ \ elty -> lam $ \ l -> lam $ \ r -> ccatV front back elty l r ECAt -> indexPrimOne indexFront ECAtRange -> indexPrimMany indexFrontRange ECAtBack -> indexPrimOne indexBack ECAtRangeBack -> indexPrimMany indexBackRange ECFunEq -> funCmp (== EQ) ECFunNotEq -> funCmp (/= EQ) ECZero -> tlam zeroV ECJoin -> tlam $ \ parts -> tlam $ \ each -> tlam $ \ a -> lam (joinV parts each a) ECSplit -> ecSplitV ECSplitAt -> tlam $ \ front -> tlam $ \ back -> tlam $ \ a -> lam (splitAtV front back a) ECFromThen -> fromThenV ECFromTo -> fromToV ECFromThenTo -> fromThenToV ECInfFrom -> tlam $ \(finTValue -> bits) -> lam $ \(fromWord -> first) -> toStream (map (word bits) [ first .. ]) ECInfFromThen -> tlam $ \(finTValue -> bits) -> lam $ \(fromWord -> first) -> lam $ \(fromWord -> next) -> toStream [ word bits n | n <- [ first, next .. ] ] ECError -> tlam $ \_ -> tlam $ \_ -> lam $ \(fromStr -> s) -> cryUserError s ECReverse -> tlam $ \a -> tlam $ \b -> lam $ \(fromSeq -> xs) -> toSeq a b (reverse xs) ECTranspose -> tlam $ \a -> tlam $ \b -> tlam $ \c -> lam $ \((map fromSeq . fromSeq) -> xs) -> case numTValue a of Nat 0 -> let val = toSeq a c [] in case numTValue b of Nat n -> toSeq b (tvSeq a c) $ genericReplicate n val Inf -> VStream $ repeat val _ -> toSeq b (tvSeq a c) $ map (toSeq a c) $ transpose xs ECPMul -> tlam $ \(finTValue -> a) -> tlam $ \(finTValue -> b) -> lam $ \(fromWord -> x) -> lam $ \(fromWord -> y) -> word (max 1 (a + b) - 1) (mul 0 x y b) where mul !res !_ !_ 0 = res mul res bs as n = mul (if even as then res else xor res bs) (bs `shiftL` 1) (as `shiftR` 1) (n-1) ECPDiv -> tlam $ \(fromInteger . finTValue -> a) -> tlam $ \(fromInteger . finTValue -> b) -> lam $ \(fromWord -> x) -> lam $ \(fromWord -> y) -> word (toInteger a) (fst (divModPoly x a y b)) ECPMod -> tlam $ \(fromInteger . finTValue -> a) -> tlam $ \(fromInteger . finTValue -> b) -> lam $ \(fromWord -> x) -> lam $ \(fromWord -> y) -> word (toInteger b) (snd (divModPoly x a y (b+1))) ECRandom -> tlam $ \a -> lam $ \(fromWord -> x) -> randomV a x -- | Make a numeric constant. ecDemoteV :: Value ecDemoteV = tlam $ \valT -> tlam $ \bitT -> case (numTValue valT, numTValue bitT) of (Nat v, Nat bs) -> VWord (mkBv bs v) _ -> evalPanic "Cryptol.Eval.Prim.evalConst" ["Unexpected Inf in constant." , show valT , show bitT ] -------------------------------------------------------------------------------- divModPoly :: Integer -> Int -> Integer -> Int -> (Integer, Integer) divModPoly xs xsLen ys ysLen | ys == 0 = divideByZero | otherwise = go 0 initR (xsLen - degree) todoBits where downIxes n = [ n - 1, n - 2 .. 0 ] degree = head [ n | n <- downIxes ysLen, testBit ys n ] initR = xs `shiftR` (xsLen - degree) nextR r b = (r `shiftL` 1) .|. (if b then 1 else 0) go !res !r !bitN todo = let x = xor r ys (res',r') | testBit x degree = (res, r) | otherwise = (setBit res bitN, x) in case todo of b : bs -> go res' (nextR r' b) (bitN-1) bs [] -> (res',r') todoBits = map (testBit xs) (downIxes (xsLen - degree)) -- | Create a packed word modExp :: Integer -- ^ bit size of the resulting word -> Integer -- ^ base -> Integer -- ^ exponent -> Integer modExp bits base e | bits == 0 = 0 | base < 0 || bits < 0 = evalPanic "modExp" [ "bad args: " , " base = " ++ show base , " e = " ++ show e , " bits = " ++ show modulus ] | otherwise = doubleAndAdd base e modulus where modulus = 0 `setBit` fromInteger bits doubleAndAdd :: Integer -- ^ base -> Integer -- ^ exponent mask -> Integer -- ^ modulus -> Integer doubleAndAdd base0 expMask modulus = go 1 base0 expMask where go acc base k | k > 0 = acc' `seq` base' `seq` go acc' base' (k `shiftR` 1) | otherwise = acc where acc' | k `testBit` 0 = acc `modMul` base | otherwise = acc base' = base `modMul` base modMul x y = (x * y) `mod` modulus -- Operation Lifting ----------------------------------------------------------- type GenBinary b w = TValue -> GenValue b w -> GenValue b w -> GenValue b w type Binary = GenBinary Bool BV binary :: GenBinary b w -> GenValue b w binary f = tlam $ \ ty -> lam $ \ a -> lam $ \ b -> f ty a b type GenUnary b w = TValue -> GenValue b w -> GenValue b w type Unary = GenUnary Bool BV unary :: GenUnary b w -> GenValue b w unary f = tlam $ \ ty -> lam $ \ a -> f ty a -- Arith ----------------------------------------------------------------------- -- | Turn a normal binop on Integers into one that can also deal with a bitsize. liftBinArith :: (Integer -> Integer -> Integer) -> BinArith liftBinArith op _ = op type BinArith = Integer -> Integer -> Integer -> Integer arithBinary :: BinArith -> Binary arithBinary op = loop where loop ty l r | Just (len,a) <- isTSeq ty = case numTValue len of -- words and finite sequences Nat w | isTBit a -> VWord (mkBv w (op w (fromWord l) (fromWord r))) | otherwise -> VSeq False (zipWith (loop a) (fromSeq l) (fromSeq r)) -- streams Inf -> toStream (zipWith (loop a) (fromSeq l) (fromSeq r)) -- functions | Just (_,ety) <- isTFun ty = lam $ \ x -> loop ety (fromVFun l x) (fromVFun r x) -- tuples | Just (_,tys) <- isTTuple ty = let ls = fromVTuple l rs = fromVTuple r in VTuple (zipWith3 loop tys ls rs) -- records | Just fs <- isTRec ty = VRecord [ (f, loop fty (lookupRecord f l) (lookupRecord f r)) | (f,fty) <- fs ] | otherwise = evalPanic "arithBinop" ["Invalid arguments"] arithUnary :: (Integer -> Integer) -> Unary arithUnary op = loop where loop ty x | Just (len,a) <- isTSeq ty = case numTValue len of -- words and finite sequences Nat w | isTBit a -> VWord (mkBv w (op (fromWord x))) | otherwise -> VSeq False (map (loop a) (fromSeq x)) Inf -> toStream (map (loop a) (fromSeq x)) -- functions | Just (_,ety) <- isTFun ty = lam $ \ y -> loop ety (fromVFun x y) -- tuples | Just (_,tys) <- isTTuple ty = let as = fromVTuple x in VTuple (zipWith loop tys as) -- records | Just fs <- isTRec ty = VRecord [ (f, loop fty (lookupRecord f x)) | (f,fty) <- fs ] | otherwise = evalPanic "arithUnary" ["Invalid arguments"] lg2 :: Integer -> Integer lg2 i = case genLog i 2 of Just (i',isExact) | isExact -> i' | otherwise -> i' + 1 Nothing -> 0 divWrap :: Integral a => a -> a -> a divWrap _ 0 = divideByZero divWrap x y = x `div` y modWrap :: Integral a => a -> a -> a modWrap _ 0 = divideByZero modWrap x y = x `mod` y -- Cmp ------------------------------------------------------------------------- -- | Lexicographic ordering on two values. lexCompare :: TValue -> Value -> Value -> Ordering lexCompare ty l r | isTBit ty = compare (fromVBit l) (fromVBit r) | Just (_,b) <- isTSeq ty, isTBit b = compare (fromWord l) (fromWord r) | Just (_,e) <- isTSeq ty = zipLexCompare (repeat e) (fromSeq l) (fromSeq r) -- tuples | Just (_,etys) <- isTTuple ty = zipLexCompare etys (fromVTuple l) (fromVTuple r) -- records | Just fields <- isTRec ty = let tys = map snd (sortBy (comparing fst) fields) ls = map snd (sortBy (comparing fst) (fromVRecord l)) rs = map snd (sortBy (comparing fst) (fromVRecord r)) in zipLexCompare tys ls rs | otherwise = evalPanic "lexCompare" ["invalid type"] -- XXX the lists are expected to be of the same length, as this should only be -- used with values that come from type-correct expressions. zipLexCompare :: [TValue] -> [Value] -> [Value] -> Ordering zipLexCompare tys ls rs = foldr choose EQ (zipWith3 lexCompare tys ls rs) where choose c acc = case c of EQ -> acc _ -> c -- | Process two elements based on their lexicographic ordering. cmpOrder :: (Ordering -> Bool) -> Binary cmpOrder op ty l r = VBit (op (lexCompare ty l r)) withOrder :: (Ordering -> TValue -> Value -> Value -> Value) -> Binary withOrder choose ty l r = choose (lexCompare ty l r) ty l r maxV :: Ordering -> TValue -> Value -> Value -> Value maxV o _ l r = case o of LT -> r _ -> l minV :: Ordering -> TValue -> Value -> Value -> Value minV o _ l r = case o of GT -> r _ -> l funCmp :: (Ordering -> Bool) -> Value funCmp op = tlam $ \ _a -> tlam $ \ b -> lam $ \ l -> lam $ \ r -> lam $ \ x -> cmpOrder op b (fromVFun l x) (fromVFun r x) -- Logic ----------------------------------------------------------------------- zeroV :: TValue -> Value zeroV ty -- bits | isTBit ty = VBit False -- sequences | Just (n,ety) <- isTSeq ty = case numTValue n of Nat w | isTBit ety -> word w 0 | otherwise -> toSeq n ety (replicate (fromInteger w) (zeroV ety)) Inf -> toSeq n ety (repeat (zeroV ety)) -- functions | Just (_,bty) <- isTFun ty = lam (\ _ -> zeroV bty) -- tuples | Just (_,tys) <- isTTuple ty = VTuple (map zeroV tys) -- records | Just fields <- isTRec ty = VRecord [ (f,zeroV fty) | (f,fty) <- fields ] | otherwise = evalPanic "zeroV" ["invalid type for zero"] -- | Join a sequence of sequences into a single sequence. joinV :: TValue -> TValue -> TValue -> Value -> Value joinV parts each a val = let len = toNumTValue (numTValue parts `nMul` numTValue each) in toSeq len a (concatMap fromSeq (fromSeq val)) splitAtV :: TValue -> TValue -> TValue -> Value -> Value splitAtV front back a val = case numTValue back of -- remember that words are big-endian in cryptol, so the masked portion -- needs to be first, assuming that we're on a little-endian machine. Nat rightWidth | aBit -> let i = fromWord val in VTuple [ word leftWidth (i `shiftR` fromInteger rightWidth) , word rightWidth i ] _ -> let (ls,rs) = splitAt (fromInteger leftWidth) (fromSeq val) in VTuple [VSeq aBit ls, toSeq back a rs] where aBit = isTBit a leftWidth = case numTValue front of Nat n -> n _ -> evalPanic "splitAtV" ["invalid `front` len"] -- | Split implementation. ecSplitV :: Value ecSplitV = tlam $ \ parts -> tlam $ \ each -> tlam $ \ a -> lam $ \ val -> let mkChunks f = map (toFinSeq a) $ f $ fromSeq val in case (numTValue parts, numTValue each) of (Nat p, Nat e) -> VSeq False $ mkChunks (finChunksOf p e) (Inf , Nat e) -> toStream $ mkChunks (infChunksOf e) _ -> evalPanic "splitV" ["invalid type arguments to split"] -- | Split into infinitely many chunks infChunksOf :: Integer -> [a] -> [[a]] infChunksOf each xs = let (as,bs) = genericSplitAt each xs in as : infChunksOf each bs -- | Split into finitely many chunks finChunksOf :: Integer -> Integer -> [a] -> [[a]] finChunksOf 0 _ _ = [] finChunksOf parts each xs = let (as,bs) = genericSplitAt each xs in as : finChunksOf (parts - 1) each bs ccatV :: TValue -> TValue -> TValue -> Value -> Value -> Value ccatV front back elty l r = toSeq (evalTF TCAdd [front,back]) elty (fromSeq l ++ fromSeq r) -- | Merge two values given a binop. This is used for and, or and xor. logicBinary :: (forall a. Bits a => a -> a -> a) -> Binary logicBinary op = loop where loop ty l r | isTBit ty = VBit (op (fromVBit l) (fromVBit r)) | Just (len,aty) <- isTSeq ty = case numTValue len of -- words or finite sequences Nat w | isTBit aty -> VWord (mkBv w (op (fromWord l) (fromWord r))) | otherwise -> VSeq False (zipWith (loop aty) (fromSeq l) (fromSeq r)) -- streams Inf -> toStream (zipWith (loop aty) (fromSeq l) (fromSeq r)) | Just (_,etys) <- isTTuple ty = let ls = fromVTuple l rs = fromVTuple r in VTuple (zipWith3 loop etys ls rs) | Just (_,bty) <- isTFun ty = lam $ \ a -> loop bty (fromVFun l a) (fromVFun r a) | Just fields <- isTRec ty = VRecord [ (f,loop fty a b) | (f,fty) <- fields , let a = lookupRecord f l b = lookupRecord f r ] | otherwise = evalPanic "logicBinary" ["invalid logic type"] logicUnary :: (forall a. Bits a => a -> a) -> Unary logicUnary op = loop where loop ty val | isTBit ty = VBit (op (fromVBit val)) | Just (len,ety) <- isTSeq ty = case numTValue len of -- words or finite sequences Nat w | isTBit ety -> VWord (mkBv w (op (fromWord val))) | otherwise -> VSeq False (map (loop ety) (fromSeq val)) -- streams Inf -> toStream (map (loop ety) (fromSeq val)) | Just (_,etys) <- isTTuple ty = let as = fromVTuple val in VTuple (zipWith loop etys as) | Just (_,bty) <- isTFun ty = lam $ \ a -> loop bty (fromVFun val a) | Just fields <- isTRec ty = VRecord [ (f,loop fty a) | (f,fty) <- fields, let a = lookupRecord f val ] | otherwise = evalPanic "logicUnary" ["invalid logic type"] logicShift :: (Integer -> Integer -> Int -> Integer) -- ^ the Integer value (argument 2) may contain junk bits, but the -- Int (argument 3) will always be clean -> (TValue -> TValue -> [Value] -> Int -> [Value]) -> Value logicShift opW opS = tlam $ \ a -> tlam $ \ _ -> tlam $ \ c -> lam $ \ l -> lam $ \ r -> if isTBit c then -- words let BV w i = fromVWord l in VWord (BV w (opW w i (fromInteger (fromWord r)))) else toSeq a c (opS a c (fromSeq l) (fromInteger (fromWord r))) -- Left shift for words. shiftLW :: Integer -> Integer -> Int -> Integer shiftLW w ival by | toInteger by >= w = 0 | otherwise = shiftL ival by shiftLS :: TValue -> TValue -> [Value] -> Int -> [Value] shiftLS w ety vs by = case numTValue w of Nat len | toInteger by < len -> genericTake len (drop by vs ++ repeat (zeroV ety)) | otherwise -> genericReplicate len (zeroV ety) Inf -> drop by vs shiftRW :: Integer -> Integer -> Int -> Integer shiftRW w i by | toInteger by >= w = 0 | otherwise = shiftR (mask w i) by shiftRS :: TValue -> TValue -> [Value] -> Int -> [Value] shiftRS w ety vs by = case numTValue w of Nat len | toInteger by < len -> genericTake len (replicate by (zeroV ety) ++ vs) | otherwise -> genericReplicate len (zeroV ety) Inf -> replicate by (zeroV ety) ++ vs -- XXX integer doesn't implement rotateL, as there's no bit bound rotateLW :: Integer -> Integer -> Int -> Integer rotateLW 0 i _ = i rotateLW w i by = (i `shiftL` b) .|. (mask w i `shiftR` (fromInteger w - b)) where b = by `mod` fromInteger w rotateLS :: TValue -> TValue -> [Value] -> Int -> [Value] rotateLS w _ vs at = case numTValue w of Nat len -> let at' = toInteger at `mod` len (ls,rs) = genericSplitAt at' vs in rs ++ ls _ -> panic "Cryptol.Eval.Prim.rotateLS" [ "unexpected infinite sequence" ] -- XXX integer doesn't implement rotateR, as there's no bit bound rotateRW :: Integer -> Integer -> Int -> Integer rotateRW 0 i _ = i rotateRW w i by = (mask w i `shiftR` b) .|. (i `shiftL` (fromInteger w - b)) where b = by `mod` fromInteger w rotateRS :: TValue -> TValue -> [Value] -> Int -> [Value] rotateRS w _ vs at = case numTValue w of Nat len -> let at' = toInteger at `mod` len (ls,rs) = genericSplitAt (len - at') vs in rs ++ ls _ -> panic "Cryptol.Eval.Prim.rotateRS" [ "unexpected infinite sequence" ] -- Sequence Primitives --------------------------------------------------------- -- | Indexing operations that return one element. indexPrimOne :: (Maybe Integer -> [Value] -> Integer -> Value) -> Value indexPrimOne op = tlam $ \ n -> tlam $ \ _a -> tlam $ \ _i -> lam $ \ l -> lam $ \ r -> let vs = fromSeq l ix = fromWord r in op (fromNat (numTValue n)) vs ix indexFront :: Maybe Integer -> [Value] -> Integer -> Value indexFront mblen vs ix = case mblen of Just len | len <= ix -> invalidIndex ix _ -> genericIndex vs ix indexBack :: Maybe Integer -> [Value] -> Integer -> Value indexBack mblen vs ix = case mblen of Just len | len > ix -> genericIndex vs (len - ix - 1) | otherwise -> invalidIndex ix Nothing -> evalPanic "indexBack" ["unexpected infinite sequence"] -- | Indexing operations that return many elements. indexPrimMany :: (Maybe Integer -> [Value] -> [Integer] -> [Value]) -> Value indexPrimMany op = tlam $ \ n -> tlam $ \ a -> tlam $ \ m -> tlam $ \ _i -> lam $ \ l -> lam $ \ r -> let vs = fromSeq l ixs = map fromWord (fromSeq r) in toSeq m a (op (fromNat (numTValue n)) vs ixs) indexFrontRange :: Maybe Integer -> [Value] -> [Integer] -> [Value] indexFrontRange mblen vs = map (indexFront mblen vs) indexBackRange :: Maybe Integer -> [Value] -> [Integer] -> [Value] indexBackRange mblen vs = map (indexBack mblen vs) -- @[ 0, 1 .. ]@ fromThenV :: Value fromThenV = tlamN $ \ first -> tlamN $ \ next -> tlamN $ \ bits -> tlamN $ \ len -> case (first, next, len, bits) of (_ , _ , _ , Nat bits') | bits' >= Arch.maxBigIntWidth -> wordTooWide bits' (Nat first', Nat next', Nat len', Nat bits') -> let nums = enumFromThen first' next' in VSeq False (genericTake len' (map (VWord . BV bits') nums)) _ -> evalPanic "fromThenV" ["invalid arguments"] -- @[ 0 .. 10 ]@ fromToV :: Value fromToV = tlamN $ \ first -> tlamN $ \ lst -> tlamN $ \ bits -> case (first, lst, bits) of (_ , _ , Nat bits') | bits' >= Arch.maxBigIntWidth -> wordTooWide bits' (Nat first', Nat lst', Nat bits') -> let nums = enumFromThenTo first' (first' + 1) lst' len = 1 + (lst' - first') in VSeq False (genericTake len (map (VWord . BV bits') nums)) _ -> evalPanic "fromThenV" ["invalid arguments"] -- @[ 0, 1 .. 10 ]@ fromThenToV :: Value fromThenToV = tlamN $ \ first -> tlamN $ \ next -> tlamN $ \ lst -> tlamN $ \ bits -> tlamN $ \ len -> case (first, next, lst, len, bits) of (_ , _ , _ , _ , Nat bits') | bits' >= Arch.maxBigIntWidth -> wordTooWide bits' (Nat first', Nat next', Nat lst', Nat len', Nat bits') -> let nums = enumFromThenTo first' next' lst' in VSeq False (genericTake len' (map (VWord . BV bits') nums)) _ -> evalPanic "fromThenV" ["invalid arguments"] -- Random Values --------------------------------------------------------------- -- | Produce a random value with the given seed. If we do not support -- making values of the given type, return zero of that type. -- TODO: do better than returning zero randomV :: TValue -> Integer -> Value randomV ty seed = case randomValue (tValTy ty) of Nothing -> zeroV ty Just gen -> fst $ gen 100 $ mkTFGen (fromIntegral seed) -- Miscellaneous --------------------------------------------------------------- tlamN :: (Nat' -> GenValue b w) -> GenValue b w tlamN f = VPoly (\x -> f (numTValue x))