/* BLAKE2 reference source code package - optimized C implementations Written in 2012 by Samuel Neves To the extent possible under law, the author(s) have dedicated all copyright and related and neighboring rights to this software to the public domain worldwide. This software is distributed without any warranty. You should have received a copy of the CC0 Public Domain Dedication along with this software. If not, see . */ #include #include #include #include "blake2.h" #include "blake2-impl.h" #include "blake2-config.h" #ifdef _MSC_VER #include /* for _mm_set_epi64x */ #endif #include #if defined(HAVE_SSSE3) #include #endif #if defined(HAVE_SSE41) #include #endif #if defined(HAVE_AVX) #include #endif #if defined(HAVE_XOP) #include #endif #include "blake2b-round.h" static const uint64_t blake2b_IV[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; static const uint8_t blake2b_sigma[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } , { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } , { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } , { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } , { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } , { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } , { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } , { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } , { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } , { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } , { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } }; /* Some helper functions, not necessarily useful */ static inline int blake2b_set_lastnode( blake2b_state *S ) { S->f[1] = -1; return 0; } static inline int blake2b_clear_lastnode( blake2b_state *S ) { S->f[1] = 0; return 0; } static inline int blake2b_set_lastblock( blake2b_state *S ) { if( S->last_node ) blake2b_set_lastnode( S ); S->f[0] = -1; return 0; } static inline int blake2b_clear_lastblock( blake2b_state *S ) { if( S->last_node ) blake2b_clear_lastnode( S ); S->f[0] = 0; return 0; } static inline int blake2b_increment_counter( blake2b_state *S, const uint64_t inc ) { #if __x86_64__ // ADD/ADC chain __uint128_t t = ( ( __uint128_t )S->t[1] << 64 ) | S->t[0]; t += inc; S->t[0] = ( uint64_t )( t >> 0 ); S->t[1] = ( uint64_t )( t >> 64 ); #else S->t[0] += inc; S->t[1] += ( S->t[0] < inc ); #endif return 0; } // Parameter-related functions static inline int blake2b_param_set_digest_length( blake2b_param *P, const uint8_t digest_length ) { P->digest_length = digest_length; return 0; } static inline int blake2b_param_set_fanout( blake2b_param *P, const uint8_t fanout ) { P->fanout = fanout; return 0; } static inline int blake2b_param_set_max_depth( blake2b_param *P, const uint8_t depth ) { P->depth = depth; return 0; } static inline int blake2b_param_set_leaf_length( blake2b_param *P, const uint32_t leaf_length ) { P->leaf_length = leaf_length; return 0; } static inline int blake2b_param_set_node_offset( blake2b_param *P, const uint64_t node_offset ) { P->node_offset = node_offset; return 0; } static inline int blake2b_param_set_node_depth( blake2b_param *P, const uint8_t node_depth ) { P->node_depth = node_depth; return 0; } static inline int blake2b_param_set_inner_length( blake2b_param *P, const uint8_t inner_length ) { P->inner_length = inner_length; return 0; } static inline int blake2b_param_set_salt( blake2b_param *P, const uint8_t salt[BLAKE2B_SALTBYTES] ) { memcpy( P->salt, salt, BLAKE2B_SALTBYTES ); return 0; } static inline int blake2b_param_set_personal( blake2b_param *P, const uint8_t personal[BLAKE2B_PERSONALBYTES] ) { memcpy( P->personal, personal, BLAKE2B_PERSONALBYTES ); return 0; } static inline int blake2b_init0( blake2b_state *S ) { memset( S, 0, sizeof( blake2b_state ) ); for( int i = 0; i < 8; ++i ) S->h[i] = blake2b_IV[i]; return 0; } /* init xors IV with input parameter block */ __attribute__((visibility ("hidden"))) int blake2b_init_param( blake2b_state *S, const blake2b_param *P ) { //blake2b_init0( S ); const uint8_t * v = ( const uint8_t * )( blake2b_IV ); const uint8_t * p = ( const uint8_t * )( P ); uint8_t * h = ( uint8_t * )( S->h ); /* IV XOR ParamBlock */ memset( S, 0, sizeof( blake2b_state ) ); for( int i = 0; i < BLAKE2B_OUTBYTES; ++i ) h[i] = v[i] ^ p[i]; return 0; } /* Some sort of default parameter block initialization, for sequential blake2b */ __attribute__((visibility ("hidden"))) int blake2b_init( blake2b_state *S, const uint8_t outlen ) { if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1; const blake2b_param P = { outlen, 0, 1, 1, 0, 0, 0, 0, {0}, {0}, {0} }; return blake2b_init_param( S, &P ); } __attribute__((visibility ("hidden"))) int blake2b_init_key( blake2b_state *S, const uint8_t outlen, const void *key, const uint8_t keylen ) { if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1; if ( ( !keylen ) || keylen > BLAKE2B_KEYBYTES ) return -1; const blake2b_param P = { outlen, keylen, 1, 1, 0, 0, 0, 0, {0}, {0}, {0} }; if( blake2b_init_param( S, &P ) < 0 ) return 0; { uint8_t block[BLAKE2B_BLOCKBYTES]; memset( block, 0, BLAKE2B_BLOCKBYTES ); memcpy( block, key, keylen ); blake2b_update( S, block, BLAKE2B_BLOCKBYTES ); secure_zero_memory( block, BLAKE2B_BLOCKBYTES ); /* Burn the key from stack */ } return 0; } static inline int blake2b_compress( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] ) { __m128i row1l, row1h; __m128i row2l, row2h; __m128i row3l, row3h; __m128i row4l, row4h; __m128i b0, b1; __m128i t0, t1; #if defined(HAVE_SSSE3) && !defined(HAVE_XOP) const __m128i r16 = _mm_setr_epi8( 2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9 ); const __m128i r24 = _mm_setr_epi8( 3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10 ); #endif #if defined(HAVE_SSE41) const __m128i m0 = LOADU( block + 00 ); const __m128i m1 = LOADU( block + 16 ); const __m128i m2 = LOADU( block + 32 ); const __m128i m3 = LOADU( block + 48 ); const __m128i m4 = LOADU( block + 64 ); const __m128i m5 = LOADU( block + 80 ); const __m128i m6 = LOADU( block + 96 ); const __m128i m7 = LOADU( block + 112 ); #else const uint64_t m0 = ( ( uint64_t * )block )[ 0]; const uint64_t m1 = ( ( uint64_t * )block )[ 1]; const uint64_t m2 = ( ( uint64_t * )block )[ 2]; const uint64_t m3 = ( ( uint64_t * )block )[ 3]; const uint64_t m4 = ( ( uint64_t * )block )[ 4]; const uint64_t m5 = ( ( uint64_t * )block )[ 5]; const uint64_t m6 = ( ( uint64_t * )block )[ 6]; const uint64_t m7 = ( ( uint64_t * )block )[ 7]; const uint64_t m8 = ( ( uint64_t * )block )[ 8]; const uint64_t m9 = ( ( uint64_t * )block )[ 9]; const uint64_t m10 = ( ( uint64_t * )block )[10]; const uint64_t m11 = ( ( uint64_t * )block )[11]; const uint64_t m12 = ( ( uint64_t * )block )[12]; const uint64_t m13 = ( ( uint64_t * )block )[13]; const uint64_t m14 = ( ( uint64_t * )block )[14]; const uint64_t m15 = ( ( uint64_t * )block )[15]; #endif row1l = LOADU( &S->h[0] ); row1h = LOADU( &S->h[2] ); row2l = LOADU( &S->h[4] ); row2h = LOADU( &S->h[6] ); row3l = LOADU( &blake2b_IV[0] ); row3h = LOADU( &blake2b_IV[2] ); row4l = _mm_xor_si128( LOADU( &blake2b_IV[4] ), LOADU( &S->t[0] ) ); row4h = _mm_xor_si128( LOADU( &blake2b_IV[6] ), LOADU( &S->f[0] ) ); ROUND( 0 ); ROUND( 1 ); ROUND( 2 ); ROUND( 3 ); ROUND( 4 ); ROUND( 5 ); ROUND( 6 ); ROUND( 7 ); ROUND( 8 ); ROUND( 9 ); ROUND( 10 ); ROUND( 11 ); row1l = _mm_xor_si128( row3l, row1l ); row1h = _mm_xor_si128( row3h, row1h ); STOREU( &S->h[0], _mm_xor_si128( LOADU( &S->h[0] ), row1l ) ); STOREU( &S->h[2], _mm_xor_si128( LOADU( &S->h[2] ), row1h ) ); row2l = _mm_xor_si128( row4l, row2l ); row2h = _mm_xor_si128( row4h, row2h ); STOREU( &S->h[4], _mm_xor_si128( LOADU( &S->h[4] ), row2l ) ); STOREU( &S->h[6], _mm_xor_si128( LOADU( &S->h[6] ), row2h ) ); return 0; } __attribute__((visibility ("hidden"))) int blake2b_update( blake2b_state *S, const uint8_t *in, uint64_t inlen ) { while( inlen > 0 ) { size_t left = S->buflen; size_t fill = 2 * BLAKE2B_BLOCKBYTES - left; if( inlen > fill ) { memcpy( S->buf + left, in, fill ); // Fill buffer S->buflen += fill; blake2b_increment_counter( S, BLAKE2B_BLOCKBYTES ); blake2b_compress( S, S->buf ); // Compress memcpy( S->buf, S->buf + BLAKE2B_BLOCKBYTES, BLAKE2B_BLOCKBYTES ); // Shift buffer left S->buflen -= BLAKE2B_BLOCKBYTES; in += fill; inlen -= fill; } else // inlen <= fill { memcpy( S->buf + left, in, inlen ); S->buflen += inlen; // Be lazy, do not compress in += inlen; inlen -= inlen; } } return 0; } __attribute__((visibility ("hidden"))) int blake2b_final( blake2b_state *S, uint8_t *out, uint8_t outlen ) { if( outlen > BLAKE2B_OUTBYTES ) return -1; if( S->buflen > BLAKE2B_BLOCKBYTES ) { blake2b_increment_counter( S, BLAKE2B_BLOCKBYTES ); blake2b_compress( S, S->buf ); S->buflen -= BLAKE2B_BLOCKBYTES; memcpy( S->buf, S->buf + BLAKE2B_BLOCKBYTES, S->buflen ); } blake2b_increment_counter( S, S->buflen ); blake2b_set_lastblock( S ); memset( S->buf + S->buflen, 0, 2 * BLAKE2B_BLOCKBYTES - S->buflen ); /* Padding */ blake2b_compress( S, S->buf ); memcpy( out, &S->h[0], outlen ); return 0; } __attribute__((visibility ("hidden"))) int blake2b( uint8_t *out, const void *in, const void *key, const uint8_t outlen, const uint64_t inlen, uint8_t keylen ) { blake2b_state S[1]; /* Verify parameters */ if ( NULL == in && inlen > 0 ) return -1; if ( NULL == out ) return -1; if( NULL == key && keylen > 0 ) return -1; if( !outlen || outlen > BLAKE2B_OUTBYTES ) return -1; if( keylen > BLAKE2B_KEYBYTES ) return -1; if( keylen ) { if( blake2b_init_key( S, outlen, key, keylen ) < 0 ) return -1; } else { if( blake2b_init( S, outlen ) < 0 ) return -1; } blake2b_update( S, ( const uint8_t * )in, inlen ); blake2b_final( S, out, outlen ); return 0; }