-- | -- Module : Crypto.Number.Basic -- License : BSD-style -- Maintainer : Vincent Hanquez -- Stability : experimental -- Portability : Good {-# LANGUAGE BangPatterns #-} module Crypto.Number.Basic ( sqrti , gcde , areEven , log2 , numBits , numBytes ) where import Crypto.Number.Compat -- | sqrti returns two integer (l,b) so that l <= sqrt i <= b -- the implementation is quite naive, use an approximation for the first number -- and use a dichotomy algorithm to compute the bound relatively efficiently. sqrti :: Integer -> (Integer, Integer) sqrti i | i < 0 = error "cannot compute negative square root" | i == 0 = (0,0) | i == 1 = (1,1) | i == 2 = (1,2) | otherwise = loop x0 where nbdigits = length $ show i x0n = (if even nbdigits then nbdigits - 2 else nbdigits - 1) `div` 2 x0 = if even nbdigits then 2 * 10 ^ x0n else 6 * 10 ^ x0n loop x = case compare (sq x) i of LT -> iterUp x EQ -> (x, x) GT -> iterDown x iterUp lb = if sq ub >= i then iter lb ub else iterUp ub where ub = lb * 2 iterDown ub = if sq lb >= i then iterDown lb else iter lb ub where lb = ub `div` 2 iter lb ub | lb == ub = (lb, ub) | lb+1 == ub = (lb, ub) | otherwise = let d = (ub - lb) `div` 2 in if sq (lb + d) >= i then iter lb (ub-d) else iter (lb+d) ub sq a = a * a -- | get the extended GCD of two integer using integer divMod -- -- gcde 'a' 'b' find (x,y,gcd(a,b)) where ax + by = d -- gcde :: Integer -> Integer -> (Integer, Integer, Integer) gcde a b = onGmpUnsupported (gmpGcde a b) $ if d < 0 then (-x,-y,-d) else (x,y,d) where (d, x, y) = f (a,1,0) (b,0,1) f t (0, _, _) = t f (a', sa, ta) t@(b', sb, tb) = let (q, r) = a' `divMod` b' in f t (r, sa - (q * sb), ta - (q * tb)) -- | check if a list of integer are all even areEven :: [Integer] -> Bool areEven = and . map even -- | Compute the binary logarithm of a integer log2 :: Integer -> Int log2 n = onGmpUnsupported (gmpLog2 n) $ imLog 2 n where -- http://www.haskell.org/pipermail/haskell-cafe/2008-February/039465.html imLog b x = if x < b then 0 else (x `div` b^l) `doDiv` l where l = 2 * imLog (b * b) x doDiv x' l' = if x' < b then l' else (x' `div` b) `doDiv` (l' + 1) {-# INLINE log2 #-} -- | Compute the number of bits for an integer numBits :: Integer -> Int numBits n = gmpSizeInBits n `onGmpUnsupported` (if n == 0 then 1 else computeBits 0 n) where computeBits !acc i | q == 0 = if r >= 0x80 then acc+8 else if r >= 0x40 then acc+7 else if r >= 0x20 then acc+6 else if r >= 0x10 then acc+5 else if r >= 0x08 then acc+4 else if r >= 0x04 then acc+3 else if r >= 0x02 then acc+2 else if r >= 0x01 then acc+1 else acc -- should be catch by previous loop | otherwise = computeBits (acc+8) q where (q,r) = i `divMod` 256 -- | Compute the number of bytes for an integer numBytes :: Integer -> Int numBytes n = gmpSizeInBytes n `onGmpUnsupported` ((numBits n + 7) `div` 8)