/* * Argon2 reference source code package - reference C implementations * * Copyright 2015 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves * * You may use this work under the terms of a Creative Commons CC0 1.0 * License/Waiver or the Apache Public License 2.0, at your option. The terms of * these licenses can be found at: * * - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 * - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 * * You should have received a copy of both of these licenses along with this * software. If not, they may be obtained at the above URLs. */ #include #include #include #include "argon2.h" #include "opt.h" #include "blake2/blake2.h" #include "blake2/blamka-round-opt.h" static void fill_block(__m128i *state, const block *ref_block, block *next_block, int with_xor) { __m128i block_XY[ARGON2_OWORDS_IN_BLOCK]; unsigned int i; if (with_xor) { for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) { state[i] = _mm_xor_si128( state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i)); block_XY[i] = _mm_xor_si128( state[i], _mm_loadu_si128((const __m128i *)next_block->v + i)); } } else { for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) { block_XY[i] = state[i] = _mm_xor_si128( state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i)); } } for (i = 0; i < 8; ++i) { BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], state[8 * i + 3], state[8 * i + 4], state[8 * i + 5], state[8 * i + 6], state[8 * i + 7]); } for (i = 0; i < 8; ++i) { BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i], state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i], state[8 * 6 + i], state[8 * 7 + i]); } for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) { state[i] = _mm_xor_si128(state[i], block_XY[i]); _mm_storeu_si128((__m128i *)next_block->v + i, state[i]); } } static void next_addresses(block *address_block, block *input_block) { /*Temporary zero-initialized blocks*/ __m128i zero_block[ARGON2_OWORDS_IN_BLOCK]; __m128i zero2_block[ARGON2_OWORDS_IN_BLOCK]; memset(zero_block, 0, sizeof(zero_block)); memset(zero2_block, 0, sizeof(zero2_block)); /*Increasing index counter*/ input_block->v[6]++; /*First iteration of G*/ fill_block(zero_block, input_block, address_block, 0); /*Second iteration of G*/ fill_block(zero2_block, address_block, address_block, 0); } static void fill_segment(const argon2_instance_t *instance, argon2_position_t position) { block *ref_block = NULL, *curr_block = NULL; block address_block, input_block; uint64_t pseudo_rand, ref_index, ref_lane; uint32_t prev_offset, curr_offset; uint32_t starting_index, i; __m128i state[64]; int data_independent_addressing; if (instance == NULL) { return; } data_independent_addressing = (instance->type == Argon2_i) || (instance->type == Argon2_id && (position.pass == 0) && (position.slice < ARGON2_SYNC_POINTS / 2)); if (data_independent_addressing) { init_block_value(&input_block, 0); input_block.v[0] = position.pass; input_block.v[1] = position.lane; input_block.v[2] = position.slice; input_block.v[3] = instance->memory_blocks; input_block.v[4] = instance->passes; input_block.v[5] = instance->type; } starting_index = 0; if ((0 == position.pass) && (0 == position.slice)) { starting_index = 2; /* we have already generated the first two blocks */ /* Don't forget to generate the first block of addresses: */ if (data_independent_addressing) { next_addresses(&address_block, &input_block); } } /* Offset of the current block */ curr_offset = position.lane * instance->lane_length + position.slice * instance->segment_length + starting_index; if (0 == curr_offset % instance->lane_length) { /* Last block in this lane */ prev_offset = curr_offset + instance->lane_length - 1; } else { /* Previous block */ prev_offset = curr_offset - 1; } memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE); for (i = starting_index; i < instance->segment_length; ++i, ++curr_offset, ++prev_offset) { /*1.1 Rotating prev_offset if needed */ if (curr_offset % instance->lane_length == 1) { prev_offset = curr_offset - 1; } /* 1.2 Computing the index of the reference block */ /* 1.2.1 Taking pseudo-random value from the previous block */ if (data_independent_addressing) { if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) { next_addresses(&address_block, &input_block); } pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK]; } else { pseudo_rand = instance->memory[prev_offset].v[0]; } /* 1.2.2 Computing the lane of the reference block */ ref_lane = ((pseudo_rand >> 32)) % instance->lanes; if ((position.pass == 0) && (position.slice == 0)) { /* Can not reference other lanes yet */ ref_lane = position.lane; } /* 1.2.3 Computing the number of possible reference block within the * lane. */ position.index = i; ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF, ref_lane == position.lane); /* 2 Creating a new block */ ref_block = instance->memory + instance->lane_length * ref_lane + ref_index; curr_block = instance->memory + curr_offset; if (ARGON2_VERSION_10 == instance->version) { /* version 1.2.1 and earlier: overwrite, not XOR */ fill_block(state, ref_block, curr_block, 0); } else { if(0 == position.pass) { fill_block(state, ref_block, curr_block, 0); } else { fill_block(state, ref_block, curr_block, 1); } } } }