module gradLemma where import equivProp import BoolEqBool import cong corrstId : (A : U) (a : A) -> prop (fiber A A (id A) a) corrstId A a v0 v1 = compInv (pathTo A a) (sId A a) v0 v1 (tId A a v0) (tId A a v1) corr2stId : (A : U) (h : A -> A) (ph : (x : A) -> Id A (h x) x) (a : A) -> prop (fiber A A h a) corr2stId A h ph a = substInv (A -> A) (\h -> prop (fiber A A h a)) h (id A) rem (corrstId A a) where rem : Id (A -> A) h (id A) rem = funExt A (\_ -> A) h (id A) ph gradLemma : (A B : U) (f : A -> B) (g : B -> A) -> section A B f g -> retract A B f g -> isEquiv A B f gradLemma A B f g sfg rfg = isEquivSection A B f g sfg rem where injf : injective A B f injf = retractInj A B f g rfg rem : (b : B) -> prop (Sigma A (\a -> Id B (f a) b)) rem b = split pair a0 e0 -> split pair a1 e1 -> rem19 where E : A -> U E a = Id B (f a) b F : A -> U F a = Id A (g (f a)) (g b) G : A -> U G a = Id B (f (g (f a))) (f (g b)) z0 : Sigma A E z0 = pair a0 e0 z1 : Sigma A E z1 = pair a1 e1 cg : (a:A) -> E a -> F a cg a = cong B A g (f a) b cf : (a:A) -> F a -> G a cf a = cong A B f (g (f a)) (g b) cfg : (a:A) -> E a -> G a cfg a = cong B B (\ x -> f (g x)) (f a) b pcg : Sigma A E -> Sigma A F pcg = split pair a e -> pair a (cg a e) pcf : Sigma A F -> Sigma A G pcf = split pair a e -> pair a (cf a e) fg : B -> B fg y = f (g y) pc : (u:B -> B) -> Sigma A E -> Sigma A (\ a -> Id B (u (f a)) (u b)) pc u = split pair a e -> pair a (cong B B u (f a) b e) rem1 : prop (Sigma A F) rem1 = corr2stId A (\ x -> g (f x)) rfg (g b) rem2 : Id (Sigma A F) (pcg z0) (pcg z1) rem2 = rem1 (pcg z0) (pcg z1) rem3 : Id (Sigma A G) (pcf (pcg z0)) (pcf (pcg z1)) rem3 = cong (Sigma A F) (Sigma A G) pcf (pcg z0) (pcg z1) rem2 rem4 : Id (E a0 -> G a0) (cfg a0) (\ e -> cf a0 (cg a0 e)) rem4 = congComp B A B g f (f a0) b rem5 : Id (G a0) (cfg a0 e0) (cf a0 (cg a0 e0)) rem5 = appId (E a0) (G a0) e0 (cfg a0) (\ e -> cf a0 (cg a0 e)) rem4 rem6 : Id (Sigma A G) (pc fg z0) (pcf (pcg z0)) rem6 = cong (G a0) (Sigma A G) (\ e -> pair a0 e) (cfg a0 e0) (cf a0 (cg a0 e0)) rem5 rem7 : Id (E a1 -> G a1) (cfg a1) (\ e -> cf a1 (cg a1 e)) rem7 = congComp B A B g f (f a1) b rem8 : Id (G a1) (cfg a1 e1) (cf a1 (cg a1 e1)) rem8 = appId (E a1) (G a1) e1 (cfg a1) (\ e -> cf a1 (cg a1 e)) rem7 rem9 : Id (Sigma A G) (pc fg z1) (pcf (pcg z1)) rem9 = cong (G a1) (Sigma A G) (\ e -> pair a1 e) (cfg a1 e1) (cf a1 (cg a1 e1)) rem8 rem10 : Id (Sigma A G) (pc fg z0) (pc fg z1) rem10 = compDown (Sigma A G) (pc fg z0) (pcf (pcg z0)) (pc fg z1) (pcf (pcg z1)) rem6 rem9 rem3 rem11 : Id (B -> B) fg (id B) rem11 = funExt B (\ _ -> B) fg (id B) sfg rem12 : Id (Sigma A E) (pc (id B) z0) (pc (id B) z1) rem12 = subst (B->B) (\ u -> Id (Sigma A (\ x -> Id B (u (f x)) (u b))) (pc u z0) (pc u z1)) fg (id B) rem11 rem10 c1 : (a:A) -> E a -> E a c1 a = cong B B (id B) (f a) b rem13 : Id (E a0 -> E a0) (id (E a0)) (c1 a0) rem13 = congId B (f a0) b rem14 : Id (E a0) e0 (c1 a0 e0) rem14 = appId (E a0) (E a0) e0 (id (E a0)) (c1 a0) rem13 rem15 : Id (Sigma A E) z0 (pc (id B) z0) rem15 = cong (E a0) (Sigma A E) (\ e -> pair a0 e) e0 (c1 a0 e0) rem14 rem16 : Id (E a1 -> E a1) (id (E a1)) (c1 a1) rem16 = congId B (f a1) b rem17 : Id (E a1) e1 (c1 a1 e1) rem17 = appId (E a1) (E a1) e1 (id (E a1)) (c1 a1) rem16 rem18 : Id (Sigma A E) z1 (pc (id B) z1) rem18 = cong (E a1) (Sigma A E) (\ e -> pair a1 e) e1 (c1 a1 e1) rem17 rem19 : Id (Sigma A E) z0 z1 rem19 = compDown (Sigma A E) z0 (pc (id B) z0) z1 (pc (id B) z1) rem15 rem18 rem12 -- isomorphic types are equal isoId : (A B:U) -> (f : A -> B) (g : B -> A) -> section A B f g -> retract A B f g -> Id U A B isoId A B f g sfg rfg = isEquivEq A B f (gradLemma A B f g sfg rfg) -- some applications of the gradlemma propId : (A B:U) -> prop A -> prop B -> (f : A -> B) (g : B -> A) -> Id U A B propId A B pA pB f g = isEquivEq A B f (gradLemma A B f g sfg rfg) where sfg : (b:B) -> Id B (f (g b)) b sfg b = pB (f (g b)) b rfg : (a:A) -> Id A (g (f a)) a rfg a = pA (g (f a)) a