module swap where import gradLemma -- the swap function defines an equality and : U -> U -> U and A B = (_ : A) * B swap : (A B :U) -> and A B -> and B A swap A B z = (z.2,z.1) lemSwap : (A B:U) -> (z: and A B) -> Id (and A B) (swap B A (swap A B z)) z lemSwap A B z = refl (and A B) z eqSwap : (A B :U) -> Id U (and A B) (and B A) eqSwap A B = isEquivEq (and A B) (and B A) (swap A B) rem where rem : isEquiv (and A B) (and B A) (swap A B) rem = gradLemma (and A B) (and B A) (swap A B) (swap B A) (lemSwap B A) (lemSwap A B) -- a simple test example incr : and Bool N -> and Bool N incr z = (z.1,suc z.2) incr' : and N Bool -> and N Bool incr' = subst U (\ X -> X -> X) (and Bool N) (and N Bool) (eqSwap Bool N) incr test1 : and N Bool test1 = incr' (zero,true) test2 : and N Bool test2 = incr' (suc zero,true) -- what happens if we compose eqSwap with itself? eqSwap2 : (A B : U) -> Id U (and A B) (and A B) eqSwap2 A B = comp U (and A B) (and B A) (and A B) (eqSwap A B) (eqSwap B A) incr2 : and Bool N -> and Bool N incr2 = subst U (\ X -> X -> X) (and Bool N) (and Bool N) (eqSwap2 Bool N) incr test3 : and Bool N test3 = incr2 (true,zero) test4 : and Bool N test4 = incr2 (true,suc zero) -- what happens if we compose eqSwap with its inverse? eqSwap3 : (A B : U) -> Id U (and A B) (and A B) eqSwap3 A B = comp U (and A B) (and B A) (and A B) (eqSwap A B) (inv U (and A B) (and B A) (eqSwap A B)) incr3 : and Bool N -> and Bool N incr3 = subst U (\ X -> X -> X) (and Bool N) (and Bool N) (eqSwap2 Bool N) incr test5 : and Bool N test5 = incr3 (true,zero) test6 : and Bool N test6 = incr3 (true,suc zero) -- simple example with swap and product eqPi : (A:U) -> (B0 B1 : A -> U) -> ((x:A) -> Id U (B0 x) (B1 x)) -> Id U (Pi A B0) (Pi A B1) eqPi A B0 B1 eB = mapOnPath (A->U) U (Pi A) B0 B1 rem where rem : Id (A -> U) B0 B1 rem = funExt A (\ _ -> U) B0 B1 eB eqSig : (A:U) -> (B0 B1 : A -> U) -> ((x:A) -> Id U (B0 x) (B1 x)) -> Id U (Sigma A B0) (Sigma A B1) eqSig A B0 B1 eB = mapOnPath (A->U) U (Sigma A) B0 B1 rem where rem : Id (A -> U) B0 B1 rem = funExt A (\ _ -> U) B0 B1 eB eqPiTest : Id U (Pi U (\ X -> X -> and X Bool)) (Pi U (\ X -> X -> and Bool X)) eqPiTest = eqPi U (\ X -> X -> and X Bool) (\ X -> X -> and Bool X) rem1 where rem : (X:U) -> Id U (and X Bool) (and Bool X) rem X = eqSwap X Bool rem1 : (X:U) -> Id U (X -> and X Bool) (X -> and Bool X) rem1 X = eqPi X (\ _ -> and X Bool) (\ _ -> and Bool X) (\ _ -> rem X) transPiTest : ((X:U) -> X -> and X Bool) -> (X:U) -> X -> and Bool X transPiTest = transport (Pi U (\ X -> X -> and X Bool)) (Pi U (\ X -> X -> and Bool X)) eqPiTest test12 : and Bool N test12 = transPiTest (\ X -> \ x -> (x,true)) N zero eqSigTest : Id U (Sigma U (\ X -> and X Bool)) (Sigma U (\ X -> and Bool X)) eqSigTest = eqSig U (\ X -> and X Bool) (\ X -> and Bool X) rem1 where rem1 : (X:U) -> Id U (and X Bool) (and Bool X) rem1 X = eqSwap X Bool transSigTest : (Sigma U (\ X -> and X Bool)) -> Sigma U (and Bool) transSigTest = transport (Sigma U (\ X -> and X Bool)) (Sigma U (\ X -> and Bool X)) eqSigTest test7 : U test7 = (transSigTest (Bool,(false,true))).1 test8 : and Bool test7 test8 = (transSigTest (Bool,(false,true))).2 eqSig1Test : Id U (Sigma U (\ X -> and N Bool)) (Sigma U (\ X -> and Bool N)) eqSig1Test = eqSig U (\ X -> and N Bool) (\ X -> and Bool N) rem1 where rem1 : (X:U) -> Id U (and N Bool) (and Bool N) rem1 X = eqSwap N Bool transSig1Test : (and U (and N Bool)) -> and U (and Bool N) transSig1Test = transport (and U (and N Bool)) (and U (and Bool N)) eqSig1Test eqSig2Test : Id U (Sigma N (\ _ -> and N Bool)) (Sigma N (\ _ -> and Bool N)) eqSig2Test = eqSig N (\ _ -> and N Bool) (\ _ -> and Bool N) rem1 where rem1 : N -> Id U (and N Bool) (and Bool N) rem1 n = eqSwap N Bool transSig2Test : (Sigma N (\ X -> and N Bool)) -> Sigma N (\ _ -> and Bool N) transSig2Test = transport (Sigma N (\ _ -> and N Bool)) (Sigma N (\ _ -> and Bool N)) eqSig2Test test9 : N test9 = (transSig2Test (zero,(zero,true))).1 test10 : and Bool N test10 = (transSig2Test (zero,(zero,true))).2 --- simple test eqNN : Id U (and N N) (and N N) eqNN = eqSwap N N testNN : and N N testNN = transport (and N N) (and N N) eqNN (zero,suc zero) eqUU : Id U (U -> and U U) (U -> and U U) eqUU = eqPi U (\ _ -> and U U) (\ _ -> and U U) (\ _ -> eqSwap U U) testUU : U testUU = (transport (U -> and U U) (U -> and U U) eqUU (\ X -> (X,X)) Bool).1