{- | Module : $Header$ Description : Desugaring Curry Expressions Copyright : (c) 2001 - 2004 Wolfgang Lux Martin Engelke 2011 - 2015 Björn Peemöller 2015 Jan Tikovsky 2016 - 2017 Finn Teegen License : BSD-3-clause Maintainer : bjp@informatik.uni-kiel.de Stability : experimental Portability : portable The desugaring pass removes all syntactic sugar from the module. In particular, the output of the desugarer will have the following properties. * No guarded right hand sides occur in equations, pattern declarations, and case alternatives. In addition, the declaration lists (`where`-blocks) of the right hand sides are empty; local declarations are transformed into let expressions. * Patterns in equations and case alternatives are composed only of - literals, - variables, - constructor applications, and - as patterns applied to literals or constructor applications. * Expressions are composed only of - literals, - variables, - constructors, - (binary) applications, - case expressions, - let expressions, and - expressions with a type signature. * Functional patterns are replaced by variables and are integrated in a guarded right hand side using the (=:<=) operator. * Records are transformed into ordinary data types by removing the fields. Record construction and pattern matching are represented using solely the record constructor. Record selections are represented using selector functions which are generated for each record declaration, and record updated are represented using case-expressions that perform the update. * The type environment will be extended by new function declarations for: - Record selections, and - Converted lambda expressions. As we are going to insert references to real prelude entities, all names must be properly qualified before calling this module. -} {-# LANGUAGE CPP #-} module Transformations.Desugar (desugar) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative ((<$>), (<*>)) #endif import Control.Arrow (first, second) import Control.Monad (liftM2) import Control.Monad.Extra (concatMapM) import qualified Control.Monad.State as S (State, runState, gets, modify) import Data.Foldable (foldrM) import Data.List ( (\\), elemIndex, nub, partition , tails ) import Data.Maybe (fromMaybe) import qualified Data.Set as Set (Set, empty, member, insert) import Curry.Base.Ident import Curry.Base.Position hiding (first) import Curry.Syntax import Base.Expr import Base.CurryTypes import Base.Messages (internalError) import Base.TypeExpansion import Base.Types import Base.TypeSubst import Base.Typing import Base.Utils (fst3, mapAccumM) import Env.TypeConstructor (TCEnv, TypeInfo (..), qualLookupTypeInfo) import Env.Value (ValueEnv, ValueInfo (..), qualLookupValue) -- The desugaring phase keeps only the type, function, and value -- declarations of the module, i.e., type signatures are discarded. -- While record declarations are transformed into ordinary data/newtype -- declarations, the remaining type declarations are not desugared. -- Since they cannot occur in local declaration groups, they are filtered -- out separately. Actually, the transformation is slightly more general than -- necessary as it allows value declarations at the top-level of a module. desugar :: [KnownExtension] -> ValueEnv -> TCEnv -> Module PredType -> (Module PredType, ValueEnv) desugar xs vEnv tcEnv (Module ps m es is ds) = (Module ps m es is ds', valueEnv s') where (ds', s') = S.runState (desugarModuleDecls ds) (DesugarState m xs tcEnv vEnv 1) -- --------------------------------------------------------------------------- -- Desugaring monad and accessor functions -- --------------------------------------------------------------------------- -- New identifiers may be introduced while desugaring pattern declarations, -- case and lambda-expressions, list comprehensions, and record selections -- and updates. As usual, we use a state monad transformer for generating -- unique names. In addition, the state is also used for passing through the -- type environment, which must be augmented with the types of these new -- variables. data DesugarState = DesugarState { moduleIdent :: ModuleIdent -- read-only , extensions :: [KnownExtension] -- read-only , tyConsEnv :: TCEnv -- read-only , valueEnv :: ValueEnv -- will be extended , nextId :: Integer -- counter } type DsM a = S.State DesugarState a getModuleIdent :: DsM ModuleIdent getModuleIdent = S.gets moduleIdent checkNegativeLitsExtension :: DsM Bool checkNegativeLitsExtension = S.gets (\s -> NegativeLiterals `elem` extensions s) getTyConsEnv :: DsM TCEnv getTyConsEnv = S.gets tyConsEnv getValueEnv :: DsM ValueEnv getValueEnv = S.gets valueEnv getNextId :: DsM Integer getNextId = do nid <- S.gets nextId S.modify $ \s -> s { nextId = succ nid } return nid -- --------------------------------------------------------------------------- -- Generation of fresh names -- --------------------------------------------------------------------------- -- Create a fresh variable ident for a given prefix with a monomorphic type freshVar :: Typeable t => String -> t -> DsM (PredType, Ident) freshVar prefix t = do v <- (mkIdent . (prefix ++) . show) <$> getNextId return (predType $ typeOf t, v) -- --------------------------------------------------------------------------- -- Desugaring -- --------------------------------------------------------------------------- desugarModuleDecls :: [Decl PredType] -> DsM [Decl PredType] desugarModuleDecls ds = do ds' <- concatMapM dsRecordDecl ds ds'' <- mapM dsClassAndInstanceDecl ds' ds''' <- dsDeclGroup ds'' return $ filter (not . liftM2 (||) isValueDecl isTypeSig) ds'' ++ ds''' -- ----------------------------------------------------------------------------- -- Desugaring of class and instance declarations -- ----------------------------------------------------------------------------- dsClassAndInstanceDecl :: Decl PredType -> DsM (Decl PredType) dsClassAndInstanceDecl (ClassDecl p cx cls tv ds) = ClassDecl p cx cls tv . (tds ++) <$> dsDeclGroup vds where (tds, vds) = partition isTypeSig ds dsClassAndInstanceDecl (InstanceDecl p cx cls ty ds) = InstanceDecl p cx cls ty <$> dsDeclGroup ds dsClassAndInstanceDecl d = return d -- ----------------------------------------------------------------------------- -- Desugaring of type declarations: records -- ----------------------------------------------------------------------------- -- As an extension to the Curry language, the compiler supports Haskell's -- record syntax, which introduces field labels for data and renaming types. -- Field labels can be used in constructor declarations, patterns, -- and expressions. For further convenience, an implicit selector -- function is introduced for each field label. -- Generate selector functions for record labels and replace record -- constructor declarations by ordinary constructor declarations. dsRecordDecl :: Decl PredType -> DsM [Decl PredType] dsRecordDecl (DataDecl p tc tvs cs clss) = do m <- getModuleIdent let qcs = map (qualifyWith m . constrId) cs selFuns <- mapM (genSelFun p qcs) (nub $ concatMap recordLabels cs) return $ DataDecl p tc tvs (map unlabelConstr cs) clss : selFuns dsRecordDecl (NewtypeDecl p tc tvs nc clss) = do m <- getModuleIdent let qc = qualifyWith m (nconstrId nc) selFun <- mapM (genSelFun p [qc]) (nrecordLabels nc) return $ NewtypeDecl p tc tvs (unlabelNewConstr nc) clss : selFun dsRecordDecl d = return [d] -- Generate a selector function for a single record label genSelFun :: Position -> [QualIdent] -> Ident -> DsM (Decl PredType) genSelFun p qcs l = do m <- getModuleIdent vEnv <- getValueEnv let ForAll _ pty = varType (qualifyWith m l) vEnv FunctionDecl p pty l <$> concatMapM (genSelEqn p l) qcs -- Generate a selector equation for a label and a constructor if the label -- is applicable, otherwise the empty list is returned. genSelEqn :: Position -> Ident -> QualIdent -> DsM [Equation PredType] genSelEqn p l qc = do vEnv <- getValueEnv let (ls, ty) = conType qc vEnv (tys, ty0) = arrowUnapply (instType ty) case elemIndex l ls of Just n -> do vs <- mapM (freshVar "_#rec") tys let pat = constrPattern (predType ty0) qc vs return [mkEquation p l [pat] (uncurry mkVar (vs !! n))] Nothing -> return [] -- Remove any labels from a data constructor declaration unlabelConstr :: ConstrDecl -> ConstrDecl unlabelConstr (RecordDecl p evs cx c fs) = ConstrDecl p evs cx c tys where tys = [ty | FieldDecl _ ls ty <- fs, _ <- ls] unlabelConstr c = c -- Remove any labels from a newtype constructor declaration unlabelNewConstr :: NewConstrDecl -> NewConstrDecl unlabelNewConstr (NewRecordDecl p nc (_, ty)) = NewConstrDecl p nc ty unlabelNewConstr c = c -- ----------------------------------------------------------------------------- -- Desugaring of value declarations -- ----------------------------------------------------------------------------- -- Within a declaration group, all type signatures are discarded. First, -- the patterns occurring in the left hand sides of pattern declarations -- and external declarations are desugared. Due to lazy patterns, the former -- may add further declarations to the group that must be desugared as well. dsDeclGroup :: [Decl PredType] -> DsM [Decl PredType] dsDeclGroup ds = concatMapM dsDeclLhs (filter isValueDecl ds) >>= mapM dsDeclRhs dsDeclLhs :: Decl PredType -> DsM [Decl PredType] dsDeclLhs (PatternDecl p t rhs) = do (ds', t') <- dsPat p [] t dss' <- mapM dsDeclLhs ds' return $ PatternDecl p t' rhs : concat dss' dsDeclLhs d = return [d] -- TODO: Check if obsolete and remove -- After desugaring its right hand side, each equation is eta-expanded -- by adding as many variables as necessary to the argument list and -- applying the right hand side to those variables (Note: eta-expansion -- is disabled in the version for PAKCS). -- Furthermore every occurrence of a record type within the type of a function -- is simplified to the corresponding type constructor from the record -- declaration. This is possible because currently records must not be empty -- and a record label belongs to only one record declaration. -- Desugaring of the right-hand-side of declarations dsDeclRhs :: Decl PredType -> DsM (Decl PredType) dsDeclRhs (FunctionDecl p pty f eqs) = FunctionDecl p pty f <$> mapM dsEquation eqs dsDeclRhs (PatternDecl p t rhs) = PatternDecl p t <$> dsRhs p id rhs dsDeclRhs d@(FreeDecl _ _) = return d dsDeclRhs d@(ExternalDecl _ _) = return d dsDeclRhs _ = error "Desugar.dsDeclRhs: no pattern match" -- Desugaring of an equation dsEquation :: Equation PredType -> DsM (Equation PredType) dsEquation (Equation p lhs rhs) = do ( cs1, ts1) <- dsNonLinearity ts (ds1, cs2, ts2) <- dsFunctionalPatterns p ts1 (ds2, ts3) <- mapAccumM (dsPat p) [] ts2 rhs' <- dsRhs p (constrain cs2 . constrain cs1) (addDecls (ds1 ++ ds2) rhs) return $ Equation p (FunLhs f ts3) rhs' where (f, ts) = flatLhs lhs -- Constrain an expression by a list of constraints. -- @constrain [] e == e@ -- @constrain c_n e == (c_1 & ... & c_n) &> e@ constrain :: [Expression PredType] -> Expression PredType -> Expression PredType constrain cs e = if null cs then e else foldr1 (&) cs &> e -- ----------------------------------------------------------------------------- -- Desugaring of right-hand sides -- ----------------------------------------------------------------------------- -- A list of boolean guards is expanded into a nested if-then-else -- expression, whereas a constraint guard is replaced by a case -- expression. Note that if the guard type is 'Success' only a -- single guard is allowed for each equation (This change was -- introduced in version 0.8 of the Curry report.). We check for the -- type 'Bool' of the guard because the guard's type defaults to -- 'Success' if it is not restricted by the guard expression. dsRhs :: Position -> (Expression PredType -> Expression PredType) -> Rhs PredType -> DsM (Rhs PredType) dsRhs p f rhs = expandRhs (prelFailed (typeOf rhs)) f rhs >>= dsExpr pRhs >>= return . simpleRhs pRhs where pRhs = fromMaybe p (getRhsPosition rhs) expandRhs :: Expression PredType -> (Expression PredType -> Expression PredType) -> Rhs PredType -> DsM (Expression PredType) expandRhs _ f (SimpleRhs _ e ds) = return $ Let ds (f e) expandRhs e0 f (GuardedRhs es ds) = (Let ds . f) <$> expandGuards e0 es expandGuards :: Expression PredType -> [CondExpr PredType] -> DsM (Expression PredType) expandGuards e0 es = return $ if boolGuards es then foldr mkIfThenElse e0 es else mkCond es where mkIfThenElse (CondExpr _ g e) = IfThenElse g e mkCond [CondExpr _ g e] = g &> e mkCond _ = error "Desugar.expandGuards.mkCond: non-unary list" boolGuards :: [CondExpr PredType] -> Bool boolGuards [] = False boolGuards (CondExpr _ g _ : es) = not (null es) || typeOf g == boolType -- Add additional declarations to a right-hand side addDecls :: [Decl PredType] -> Rhs PredType -> Rhs PredType addDecls ds (SimpleRhs p e ds') = SimpleRhs p e (ds ++ ds') addDecls ds (GuardedRhs es ds') = GuardedRhs es (ds ++ ds') getRhsPosition :: Rhs a -> Maybe Position getRhsPosition (SimpleRhs p _ _) = Just p getRhsPosition (GuardedRhs _ _) = Nothing -- ----------------------------------------------------------------------------- -- Desugaring of non-linear patterns -- ----------------------------------------------------------------------------- -- The desugaring traverses a pattern in depth-first order and collects -- all variables. If it encounters a variable which has been previously -- introduced, the second occurrence is changed to a fresh variable -- and a new pair (newvar, oldvar) is saved to generate constraints later. -- Non-linear patterns inside single functional patterns are not desugared, -- as this special case is handled later. dsNonLinearity :: [Pattern PredType] -> DsM ([Expression PredType], [Pattern PredType]) dsNonLinearity ts = do ((_, cs), ts') <- mapAccumM dsNonLinear (Set.empty, []) ts return (reverse cs, ts') type NonLinearEnv = (Set.Set Ident, [Expression PredType]) dsNonLinear :: NonLinearEnv -> Pattern PredType -> DsM (NonLinearEnv, Pattern PredType) dsNonLinear env l@(LiteralPattern _ _) = return (env, l) dsNonLinear env n@(NegativePattern _ _) = return (env, n) dsNonLinear env t@(VariablePattern _ v) | isAnonId v = return (env, t) | v `Set.member` vis = do v' <- freshVar "_#nonlinear" t return ((vis, mkStrictEquality v v' : eqs), uncurry VariablePattern v') | otherwise = return ((Set.insert v vis, eqs), t) where (vis, eqs) = env dsNonLinear env (ConstructorPattern pty c ts) = second (ConstructorPattern pty c) <$> mapAccumM dsNonLinear env ts dsNonLinear env (InfixPattern pty t1 op t2) = do (env1, t1') <- dsNonLinear env t1 (env2, t2') <- dsNonLinear env1 t2 return (env2, InfixPattern pty t1' op t2') dsNonLinear env (ParenPattern t) = second ParenPattern <$> dsNonLinear env t dsNonLinear env (RecordPattern pty c fs) = second (RecordPattern pty c) <$> mapAccumM (dsField dsNonLinear) env fs dsNonLinear env (TuplePattern ts) = second TuplePattern <$> mapAccumM dsNonLinear env ts dsNonLinear env (ListPattern pty ts) = second (ListPattern pty) <$> mapAccumM dsNonLinear env ts dsNonLinear env (AsPattern v t) = do let pty = predType $ typeOf t (env1, VariablePattern _ v') <- dsNonLinear env (VariablePattern pty v) (env2, t') <- dsNonLinear env1 t return (env2, AsPattern v' t') dsNonLinear env (LazyPattern t) = second LazyPattern <$> dsNonLinear env t dsNonLinear env fp@(FunctionPattern _ _ _) = dsNonLinearFuncPat env fp dsNonLinear env fp@(InfixFuncPattern _ _ _ _) = dsNonLinearFuncPat env fp dsNonLinearFuncPat :: NonLinearEnv -> Pattern PredType -> DsM (NonLinearEnv, Pattern PredType) dsNonLinearFuncPat (vis, eqs) fp = do let fpVars = map (\(v, _, pty) -> (pty, v)) $ patternVars fp vs = filter ((`Set.member` vis) . snd) fpVars vs' <- mapM (freshVar "_#nonlinear" . uncurry VariablePattern) vs let vis' = foldr (Set.insert . snd) vis fpVars fp' = substPat (zip (map snd vs) (map snd vs')) fp return ((vis', zipWith mkStrictEquality (map snd vs) vs' ++ eqs), fp') mkStrictEquality :: Ident -> (PredType, Ident) -> Expression PredType mkStrictEquality x (pty, y) = mkVar pty x =:= mkVar pty y substPat :: [(Ident, Ident)] -> Pattern a -> Pattern a substPat _ l@(LiteralPattern _ _) = l substPat _ n@(NegativePattern _ _) = n substPat s (VariablePattern a v) = VariablePattern a $ fromMaybe v (lookup v s) substPat s (ConstructorPattern a c ps) = ConstructorPattern a c $ map (substPat s) ps substPat s (InfixPattern a p1 op p2) = InfixPattern a (substPat s p1) op (substPat s p2) substPat s (ParenPattern p) = ParenPattern (substPat s p) substPat s (RecordPattern a c fs) = RecordPattern a c (map substField fs) where substField (Field pos l pat) = Field pos l (substPat s pat) substPat s (TuplePattern ps) = TuplePattern $ map (substPat s) ps substPat s (ListPattern a ps) = ListPattern a $ map (substPat s) ps substPat s (AsPattern v p) = AsPattern (fromMaybe v (lookup v s)) (substPat s p) substPat s (LazyPattern p) = LazyPattern (substPat s p) substPat s (FunctionPattern a f ps) = FunctionPattern a f $ map (substPat s) ps substPat s (InfixFuncPattern a p1 op p2) = InfixFuncPattern a (substPat s p1) op (substPat s p2) -- ----------------------------------------------------------------------------- -- Desugaring of functional patterns -- ----------------------------------------------------------------------------- -- Desugaring of functional patterns works in the following way: -- 1. The patterns are recursively traversed from left to right -- to extract every functional pattern (note that functional patterns -- can not be nested). -- Each pattern is replaced by a fresh variable and a pair -- (variable, functional pattern) is generated. -- 2. The variable-pattern pairs of the form @(v, p)@ are collected and -- transformed into additional constraints of the form @p =:<= v@, -- where the pattern @p@ is converted to the corresponding expression. -- In addition, any variable occurring in @p@ is declared as a fresh -- free variable. -- Multiple constraints will later be combined using the @&>@-operator -- such that the patterns are evaluated from left to right. dsFunctionalPatterns :: Position -> [Pattern PredType] -> DsM ([Decl PredType], [Expression PredType], [Pattern PredType]) dsFunctionalPatterns p ts = do -- extract functional patterns (bs, ts') <- mapAccumM elimFP [] ts -- generate declarations of free variables and constraints let (ds, cs) = genFPExpr p (concatMap patternVars ts') (reverse bs) -- return (declarations, constraints, desugared patterns) return (ds, cs, ts') type LazyBinding = (Pattern PredType, (PredType, Ident)) elimFP :: [LazyBinding] -> Pattern PredType -> DsM ([LazyBinding], Pattern PredType) elimFP bs p@(LiteralPattern _ _) = return (bs, p) elimFP bs p@(NegativePattern _ _) = return (bs, p) elimFP bs p@(VariablePattern _ _) = return (bs, p) elimFP bs (ConstructorPattern pty c ts) = second (ConstructorPattern pty c) <$> mapAccumM elimFP bs ts elimFP bs (InfixPattern pty t1 op t2) = do (bs1, t1') <- elimFP bs t1 (bs2, t2') <- elimFP bs1 t2 return (bs2, InfixPattern pty t1' op t2') elimFP bs (ParenPattern t) = second ParenPattern <$> elimFP bs t elimFP bs (RecordPattern pty c fs) = second (RecordPattern pty c) <$> mapAccumM (dsField elimFP) bs fs elimFP bs (TuplePattern ts) = second TuplePattern <$> mapAccumM elimFP bs ts elimFP bs (ListPattern pty ts) = second (ListPattern pty) <$> mapAccumM elimFP bs ts elimFP bs (AsPattern v t) = second (AsPattern v) <$> elimFP bs t elimFP bs (LazyPattern t) = second LazyPattern <$> elimFP bs t elimFP bs p@(FunctionPattern _ _ _) = do (pty, v) <- freshVar "_#funpatt" p return ((p, (pty, v)) : bs, VariablePattern pty v) elimFP bs p@(InfixFuncPattern _ _ _ _) = do (pty, v) <- freshVar "_#funpatt" p return ((p, (pty, v)) : bs, VariablePattern pty v) genFPExpr :: Position -> [(Ident, Int, PredType)] -> [LazyBinding] -> ([Decl PredType], [Expression PredType]) genFPExpr p vs bs | null bs = ([] , []) | null free = ([] , cs) | otherwise = ([FreeDecl p (map (\(v, _, pty) -> Var pty v) free)], cs) where mkLB (t, (pty, v)) = let (t', es) = fp2Expr t in (t' =:<= mkVar pty v) : es cs = concatMap mkLB bs free = nub $ filter (not . isAnonId . fst3) $ concatMap patternVars (map fst bs) \\ vs fp2Expr :: Pattern PredType -> (Expression PredType, [Expression PredType]) fp2Expr (LiteralPattern pty l) = (Literal pty l, []) fp2Expr (NegativePattern pty l) = (Literal pty (negateLiteral l), []) fp2Expr (VariablePattern pty v) = (mkVar pty v, []) fp2Expr (ConstructorPattern pty c ts) = let (ts', ess) = unzip $ map fp2Expr ts pty' = predType $ foldr TypeArrow (unpredType pty) $ map typeOf ts in (apply (Constructor pty' c) ts', concat ess) fp2Expr (InfixPattern pty t1 op t2) = let (t1', es1) = fp2Expr t1 (t2', es2) = fp2Expr t2 pty' = predType $ foldr TypeArrow (unpredType pty) [typeOf t1, typeOf t2] in (InfixApply t1' (InfixConstr pty' op) t2', es1 ++ es2) fp2Expr (ParenPattern t) = first Paren (fp2Expr t) fp2Expr (TuplePattern ts) = let (ts', ess) = unzip $ map fp2Expr ts in (Tuple ts', concat ess) fp2Expr (ListPattern pty ts) = let (ts', ess) = unzip $ map fp2Expr ts in (List pty ts', concat ess) fp2Expr (FunctionPattern pty f ts) = let (ts', ess) = unzip $ map fp2Expr ts pty' = predType $ foldr TypeArrow (unpredType pty) $ map typeOf ts in (apply (Variable pty' f) ts', concat ess) fp2Expr (InfixFuncPattern pty t1 op t2) = let (t1', es1) = fp2Expr t1 (t2', es2) = fp2Expr t2 pty' = predType $ foldr TypeArrow (unpredType pty) $ map typeOf [t1, t2] in (InfixApply t1' (InfixOp pty' op) t2', es1 ++ es2) fp2Expr (AsPattern v t) = let (t', es) = fp2Expr t pty = predType $ typeOf t in (mkVar pty v, (t' =:<= mkVar pty v) : es) fp2Expr (RecordPattern pty c fs) = let (fs', ess) = unzip [ (Field p f e, es) | Field p f t <- fs , let (e, es) = fp2Expr t] in (Record pty c fs', concat ess) fp2Expr t = internalError $ "Desugar.fp2Expr: Unexpected constructor term: " ++ show t -- ----------------------------------------------------------------------------- -- Desugaring of ordinary patterns -- ----------------------------------------------------------------------------- -- The transformation of patterns is straight forward except for lazy -- patterns. A lazy pattern '~t' is replaced by a fresh -- variable 'v' and a new local declaration 't = v' in the -- scope of the pattern. In addition, as-patterns 'v@t' where -- 't' is a variable or an as-pattern are replaced by 't' in combination -- with a local declaration for 'v'. -- Record patterns are transformed into normal constructor patterns by -- rearranging fields in the order of the record's declaration, adding -- fresh variables in place of omitted fields, and discarding the field -- labels. -- Note: By rearranging fields here we loose the ability to comply -- strictly with the Haskell 98 pattern matching semantics, which matches -- fields of a record pattern in the order of their occurrence in the -- pattern. However, keep in mind that Haskell matches alternatives from -- top to bottom and arguments within an equation or alternative from -- left to right, which is not the case in Curry except for rigid case -- expressions. dsLiteralPat :: PredType -> Literal -> Either (Pattern PredType) (Pattern PredType) dsLiteralPat pty c@(Char _) = Right (LiteralPattern pty c) dsLiteralPat pty (Int i) = Right (LiteralPattern pty (fixLiteral (unpredType pty))) where fixLiteral (TypeConstrained tys _) = fixLiteral (head tys) fixLiteral ty | ty == floatType = Float $ fromInteger i | otherwise = Int i dsLiteralPat pty f@(Float _) = Right (LiteralPattern pty f) dsLiteralPat pty (String cs) = Left $ ListPattern pty $ map (LiteralPattern pty' . Char) cs where pty' = predType $ elemType $ unpredType pty dsPat :: Position -> [Decl PredType] -> Pattern PredType -> DsM ([Decl PredType], Pattern PredType) dsPat _ ds v@(VariablePattern _ _) = return (ds, v) dsPat p ds (LiteralPattern pty l) = either (dsPat p ds) (return . (,) ds) (dsLiteralPat pty l) dsPat p ds (NegativePattern pty l) = dsPat p ds (LiteralPattern pty (negateLiteral l)) dsPat p ds (ConstructorPattern pty c ts) = second (ConstructorPattern pty c) <$> mapAccumM (dsPat p) ds ts dsPat p ds (InfixPattern pty t1 op t2) = dsPat p ds (ConstructorPattern pty op [t1, t2]) dsPat p ds (ParenPattern t) = dsPat p ds t dsPat p ds (RecordPattern pty c fs) = do vEnv <- getValueEnv --TODO: Rework let (ls, tys) = argumentTypes (unpredType pty) c vEnv tsMap = map field2Tuple fs anonTs = map (flip VariablePattern anonId . predType) tys maybeTs = map (flip lookup tsMap) ls ts = zipWith fromMaybe anonTs maybeTs dsPat p ds (ConstructorPattern pty c ts) dsPat p ds (TuplePattern ts) = dsPat p ds (ConstructorPattern pty (qTupleId $ length ts) ts) where pty = predType (tupleType (map typeOf ts)) dsPat p ds (ListPattern pty ts) = second (dsList cons nil) <$> mapAccumM (dsPat p) ds ts where nil = ConstructorPattern pty qNilId [] cons t ts' = ConstructorPattern pty qConsId [t, ts'] dsPat p ds (AsPattern v t) = dsAs p v <$> dsPat p ds t dsPat p ds (LazyPattern t) = dsLazy p ds t dsPat p ds (FunctionPattern pty f ts) = second (FunctionPattern pty f) <$> mapAccumM (dsPat p) ds ts dsPat p ds (InfixFuncPattern pty t1 f t2) = dsPat p ds (FunctionPattern pty f [t1, t2]) dsAs :: Position -> Ident -> ([Decl PredType], Pattern PredType) -> ([Decl PredType], Pattern PredType) dsAs p v (ds, t) = case t of VariablePattern pty v' -> (varDecl p pty v (mkVar pty v') : ds, t) AsPattern v' t' -> (varDecl p pty' v (mkVar pty' v') : ds, t) where pty' = predType $ typeOf t' _ -> (ds, AsPattern v t) dsLazy :: Position -> [Decl PredType] -> Pattern PredType -> DsM ([Decl PredType], Pattern PredType) dsLazy p ds t = case t of VariablePattern _ _ -> return (ds, t) ParenPattern t' -> dsLazy p ds t' AsPattern v t' -> dsAs p v <$> dsLazy p ds t' LazyPattern t' -> dsLazy p ds t' _ -> do (pty, v') <- freshVar "_#lazy" t return (patDecl p t (mkVar pty v') : ds, VariablePattern pty v') {- -- ----------------------------------------------------------------------------- -- Desugaring of expressions -- ----------------------------------------------------------------------------- -- Record construction expressions are transformed into normal -- constructor applications by rearranging fields in the order of the -- record's declaration, passing `Prelude.unknown` in place of -- omitted fields, and discarding the field labels. The transformation of -- record update expressions is a bit more involved as we must match the -- updated expression with all valid constructors of the expression's -- type. As stipulated by the Haskell 98 Report, a record update -- expression @e { l_1 = e_1, ..., l_k = e_k }@ succeeds only if @e@ reduces to -- a value @C e'_1 ... e'_n@ such that @C@'s declaration contains all -- field labels @l_1,...,l_k@. In contrast to Haskell, we do not report -- an error if this is not the case, but call failed instead. -} dsExpr :: Position -> Expression PredType -> DsM (Expression PredType) dsExpr p (Literal pty l) = either (dsExpr p) return (dsLiteral pty l) dsExpr _ var@(Variable pty v) | isAnonId (unqualify v) = return $ prelUnknown $ unpredType pty | otherwise = return var dsExpr _ c@(Constructor _ _) = return c dsExpr p (Paren e) = dsExpr p e dsExpr p (Typed e qty) = Typed <$> dsExpr p e <*> dsQualTypeExpr qty dsExpr p (Record pty c fs) = do vEnv <- getValueEnv --TODO: Rework let (ls, tys) = argumentTypes (unpredType pty) c vEnv esMap = map field2Tuple fs unknownEs = map prelUnknown tys maybeEs = map (flip lookup esMap) ls es = zipWith fromMaybe unknownEs maybeEs dsExpr p (applyConstr pty c tys es) dsExpr p (RecordUpdate e fs) = do alts <- constructors tc >>= concatMapM updateAlt dsExpr p $ Case Flex e (map (uncurry (caseAlt p)) alts) where ty = typeOf e pty = predType ty tc = rootOfType (arrowBase ty) updateAlt (RecordConstr c _ _ ls _) | all (`elem` qls2) (map fieldLabel fs)= do let qc = qualifyLike tc c vEnv <- getValueEnv let (qls, tys) = argumentTypes ty qc vEnv vs <- mapM (freshVar "_#rec") tys let pat = constrPattern pty qc vs esMap = map field2Tuple fs originalEs = map (uncurry mkVar) vs maybeEs = map (flip lookup esMap) qls es = zipWith fromMaybe originalEs maybeEs return [(pat, applyConstr pty qc tys es)] where qls2 = map (qualifyLike tc) ls updateAlt _ = return [] dsExpr p (Tuple es) = apply (Constructor pty $ qTupleId $ length es) <$> mapM (dsExpr p) es where pty = predType (foldr TypeArrow (tupleType tys) tys) tys = map typeOf es dsExpr p (List pty es) = dsList cons nil <$> mapM (dsExpr p) es where nil = Constructor pty qNilId cons = Apply . Apply (Constructor (predType $ consType $ elemType $ unpredType pty) qConsId) dsExpr p (ListCompr e qs) = dsListComp p e qs dsExpr p (EnumFrom e) = Apply (prelEnumFrom (typeOf e)) <$> dsExpr p e dsExpr p (EnumFromThen e1 e2) = apply (prelEnumFromThen (typeOf e1)) <$> mapM (dsExpr p) [e1, e2] dsExpr p (EnumFromTo e1 e2) = apply (prelEnumFromTo (typeOf e1)) <$> mapM (dsExpr p) [e1, e2] dsExpr p (EnumFromThenTo e1 e2 e3) = apply (prelEnumFromThenTo (typeOf e1)) <$> mapM (dsExpr p) [e1, e2, e3] dsExpr p (UnaryMinus e) = do e' <- dsExpr p e negativeLitsEnabled <- checkNegativeLitsExtension return $ case e' of Literal pty l | negativeLitsEnabled -> Literal pty $ negateLiteral l _ -> Apply (prelNegate $ typeOf e') e' dsExpr p (Apply e1 e2) = Apply <$> dsExpr p e1 <*> dsExpr p e2 dsExpr p (InfixApply e1 op e2) = do op' <- dsExpr p (infixOp op) e1' <- dsExpr p e1 e2' <- dsExpr p e2 return $ apply op' [e1', e2'] dsExpr p (LeftSection e op) = Apply <$> dsExpr p (infixOp op) <*> dsExpr p e dsExpr p (RightSection op e) = do op' <- dsExpr p (infixOp op) e' <- dsExpr p e return $ apply (prelFlip ty1 ty2 ty3) [op', e'] where TypeArrow ty1 (TypeArrow ty2 ty3) = typeOf (infixOp op) dsExpr p expr@(Lambda ts e) = do (pty, f) <- freshVar "_#lambda" expr dsExpr p $ Let [funDecl NoPos pty f ts e] $ mkVar pty f dsExpr p (Let ds e) = do ds' <- dsDeclGroup ds e' <- dsExpr p e return (if null ds' then e' else Let ds' e') dsExpr p (Do sts e) = dsDo sts e >>= dsExpr p dsExpr p (IfThenElse e1 e2 e3) = do e1' <- dsExpr p e1 e2' <- dsExpr p e2 e3' <- dsExpr p e3 return $ Case Rigid e1' [caseAlt p truePat e2', caseAlt p falsePat e3'] dsExpr p (Case ct e alts) = dsCase p ct e alts -- We ignore the context in the type signature of a typed expression, since -- there should be no possibility to provide an non-empty context without -- scoped type-variables. -- TODO: Verify dsQualTypeExpr :: QualTypeExpr -> DsM QualTypeExpr dsQualTypeExpr (QualTypeExpr cx ty) = QualTypeExpr cx <$> dsTypeExpr ty dsTypeExpr :: TypeExpr -> DsM TypeExpr dsTypeExpr ty = do m <- getModuleIdent tcEnv <- getTyConsEnv return $ fromType (typeVariables ty) (expandType m tcEnv (toType [] ty)) -- ----------------------------------------------------------------------------- -- Desugaring of case expressions -- ----------------------------------------------------------------------------- -- If an alternative in a case expression has boolean guards and all of -- these guards return 'False', the enclosing case expression does -- not fail but continues to match the remaining alternatives against the -- selector expression. In order to implement this semantics, which is -- compatible with Haskell, we expand an alternative with boolean guards -- such that it evaluates a case expression with the remaining cases that -- are compatible with the matched pattern when the guards fail. dsCase :: Position -> CaseType -> Expression PredType -> [Alt PredType] -> DsM (Expression PredType) dsCase p ct e alts | null alts = internalError "Desugar.dsCase: empty list of alternatives" | otherwise = do m <- getModuleIdent e' <- dsExpr p e v <- freshVar "_#case" e alts' <- mapM dsAltLhs alts alts'' <- mapM (expandAlt v ct) (init (tails alts')) >>= mapM dsAltRhs return (mkCase m v e' alts'') where mkCase m (pty, v) e' bs | v `elem` qfv m bs = Let [varDecl p pty v e'] (Case ct (mkVar pty v) bs) | otherwise = Case ct e' bs dsAltLhs :: Alt PredType -> DsM (Alt PredType) dsAltLhs (Alt p t rhs) = do (ds', t') <- dsPat p [] t return $ Alt p t' (addDecls ds' rhs) dsAltRhs :: Alt PredType -> DsM (Alt PredType) dsAltRhs (Alt p t rhs) = Alt p t <$> dsRhs p id rhs expandAlt :: (PredType, Ident) -> CaseType -> [Alt PredType] -> DsM (Alt PredType) expandAlt _ _ [] = error "Desugar.expandAlt: empty list" expandAlt v ct (Alt p t rhs : alts) = caseAlt p t <$> expandRhs e0 id rhs where e0 | ct == Flex || null compAlts = prelFailed (typeOf rhs) | otherwise = Case ct (uncurry mkVar v) compAlts compAlts = filter (isCompatible t . altPattern) alts altPattern (Alt _ t1 _) = t1 isCompatible :: Pattern a -> Pattern a -> Bool isCompatible (VariablePattern _ _) _ = True isCompatible _ (VariablePattern _ _) = True isCompatible (AsPattern _ t1) t2 = isCompatible t1 t2 isCompatible t1 (AsPattern _ t2) = isCompatible t1 t2 isCompatible (ConstructorPattern _ c1 ts1) (ConstructorPattern _ c2 ts2) = and ((c1 == c2) : zipWith isCompatible ts1 ts2) isCompatible (LiteralPattern _ l1) (LiteralPattern _ l2) = l1 == l2 isCompatible _ _ = False -- ----------------------------------------------------------------------------- -- Desugaring of do-Notation -- ----------------------------------------------------------------------------- -- The do-notation is desugared in the following way: -- -- `dsDo([] , e)` -> `e` -- `dsDo(e' ; ss, e)` -> `e' >> dsDo(ss, e)` -- `dsDo(p <- e'; ss, e)` -> `e' >>= \v -> case v of -- p -> dsDo(ss, e) -- _ -> fail "..."` -- `dsDo(let ds ; ss, e)` -> `let ds in dsDo(ss, e)` dsDo :: [Statement PredType] -> Expression PredType -> DsM (Expression PredType) dsDo sts e = foldrM dsStmt e sts dsStmt :: Statement PredType -> Expression PredType -> DsM (Expression PredType) dsStmt (StmtExpr e1) e' = return $ apply (prelBind_ (typeOf e1) (typeOf e')) [e1, e'] dsStmt (StmtBind t e1) e' = do v <- freshVar "_#var" t let func = Lambda [uncurry VariablePattern v] $ Case Rigid (uncurry mkVar v) [ caseAlt NoPos t e' , caseAlt NoPos (uncurry VariablePattern v) (failedPatternMatch $ typeOf e') ] return $ apply (prelBind (typeOf e1) (typeOf t) (typeOf e')) [e1, func] where failedPatternMatch ty = apply (prelFail ty) [Literal predStringType $ String "Pattern match failed!"] dsStmt (StmtDecl ds) e' = return $ Let ds e' -- ----------------------------------------------------------------------------- -- Desugaring of List Comprehensions -- ----------------------------------------------------------------------------- -- In general, a list comprehension of the form -- '[e | t <- l, qs]' -- is transformed into an expression 'foldr f [] l' where 'f' -- is a new function defined as -- -- f x xs = -- case x of -- t -> [e | qs] ++ xs -- _ -> xs -- -- Note that this translation evaluates the elements of 'l' rigidly, -- whereas the translation given in the Curry report is flexible. -- However, it does not seem very useful to have the comprehension -- generate instances of 't' which do not contribute to the list. -- TODO: Unfortunately, this is incorrect. -- Actually, we generate slightly better code in a few special cases. -- When 't' is a plain variable, the 'case' expression degenerates -- into a let-binding and the auxiliary function thus becomes an alias -- for '(++)'. Instead of 'foldr (++)' we use the -- equivalent prelude function 'concatMap'. In addition, if the -- remaining list comprehension in the body of the auxiliary function has -- no qualifiers -- i.e., if it is equivalent to '[e]' -- we -- avoid the construction of the singleton list by calling '(:)' -- instead of '(++)' and 'map' in place of 'concatMap', respectively. dsListComp :: Position -> Expression PredType -> [Statement PredType] -> DsM (Expression PredType) dsListComp p e [] = dsExpr p (List (predType $ listType $ typeOf e) [e]) dsListComp p e (q:qs) = dsQual p q (ListCompr e qs) dsQual :: Position -> Statement PredType -> Expression PredType -> DsM (Expression PredType) dsQual p (StmtExpr b) e = dsExpr p (IfThenElse b e (List (predType $ typeOf e) [])) dsQual p (StmtDecl ds) e = dsExpr p (Let ds e) dsQual p (StmtBind t l) e | isVariablePattern t = dsExpr p (qualExpr t e l) | otherwise = do v <- freshVar "_#var" t l' <- freshVar "_#var" e dsExpr p (apply (prelFoldr (typeOf t) (typeOf e)) [foldFunct v l' e, List (predType $ typeOf e) [], l]) where qualExpr v (ListCompr e1 []) l1 = apply (prelMap (typeOf v) (typeOf e1)) [Lambda [v] e1, l1] qualExpr v e1 l1 = apply (prelConcatMap (typeOf v) (elemType $ typeOf e1)) [Lambda [v] e1, l1] foldFunct v l1 e1 = Lambda (map (uncurry VariablePattern) [v, l1]) (Case Rigid (uncurry mkVar v) [ caseAlt p t (append e1 (uncurry mkVar l1)) , caseAlt p (uncurry VariablePattern v) (uncurry mkVar l1)]) append (ListCompr e1 []) l1 = apply (prelCons (typeOf e1)) [e1, l1] append e1 l1 = apply (prelAppend (elemType $ typeOf e1)) [e1, l1] prelCons ty = Constructor (predType $ consType ty) $ qConsId -- ----------------------------------------------------------------------------- -- Desugaring of Lists, labels, fields, and literals -- ----------------------------------------------------------------------------- dsList :: (b -> b -> b) -> b -> [b] -> b dsList = foldr --dsLabel :: a -> [(QualIdent, a)] -> QualIdent -> a --dsLabel def fs l = fromMaybe def (lookup l fs) dsField :: (a -> b -> DsM (a, b)) -> a -> Field b -> DsM (a, Field b) dsField ds z (Field p l x) = second (Field p l) <$> (ds z x) dsLiteral :: PredType -> Literal -> Either (Expression PredType) (Expression PredType) dsLiteral pty (Char c) = Right $ Literal pty $ Char c dsLiteral pty (Int i) = Right $ fixLiteral (unpredType pty) where fixLiteral (TypeConstrained tys _) = fixLiteral (head tys) fixLiteral ty | ty == intType = Literal pty $ Int i | ty == floatType = Literal pty $ Float $ fromInteger i | otherwise = Apply (prelFromInt $ unpredType pty) $ Literal predIntType $ Int i dsLiteral pty f@(Float _) = Right $ fixLiteral (unpredType pty) where fixLiteral (TypeConstrained tys _) = fixLiteral (head tys) fixLiteral ty | ty == floatType = Literal pty f | otherwise = Apply (prelFromFloat $ unpredType pty) $ Literal predFloatType f dsLiteral pty (String cs) = Left $ List pty $ map (Literal pty' . Char) cs where pty' = predType $ elemType $ unpredType pty negateLiteral :: Literal -> Literal negateLiteral (Int i) = Int (-i) negateLiteral (Float f) = Float (-f) negateLiteral _ = internalError "Desugar.negateLiteral" -- --------------------------------------------------------------------------- -- Prelude entities -- --------------------------------------------------------------------------- preludeFun :: [Type] -> Type -> String -> Expression PredType preludeFun tys ty = Variable (predType $ foldr TypeArrow ty tys) . preludeIdent preludeIdent :: String -> QualIdent preludeIdent = qualifyWith preludeMIdent . mkIdent prelBind :: Type -> Type -> Type -> Expression PredType prelBind ma a mb = preludeFun [ma, TypeArrow a mb] mb ">>=" prelBind_ :: Type -> Type -> Expression PredType prelBind_ ma mb = preludeFun [ma, mb] mb ">>" prelFlip :: Type -> Type -> Type -> Expression PredType prelFlip a b c = preludeFun [TypeArrow a (TypeArrow b c), b, a] c "flip" prelFromInt :: Type -> Expression PredType prelFromInt a = preludeFun [intType] a "fromInt" prelFromFloat :: Type -> Expression PredType prelFromFloat a = preludeFun [floatType] a "fromFloat" prelEnumFrom :: Type -> Expression PredType prelEnumFrom a = preludeFun [a] (listType a) "enumFrom" prelEnumFromTo :: Type -> Expression PredType prelEnumFromTo a = preludeFun [a, a] (listType a) "enumFromTo" prelEnumFromThen :: Type -> Expression PredType prelEnumFromThen a = preludeFun [a, a] (listType a) "enumFromThen" prelEnumFromThenTo :: Type -> Expression PredType prelEnumFromThenTo a = preludeFun [a, a, a] (listType a) "enumFromThenTo" prelNegate :: Type -> Expression PredType prelNegate a = preludeFun [a] a "negate" prelFail :: Type -> Expression PredType prelFail ma = preludeFun [stringType] ma "fail" prelFailed :: Type -> Expression PredType prelFailed a = preludeFun [] a "failed" prelUnknown :: Type -> Expression PredType prelUnknown a = preludeFun [] a "unknown" prelMap :: Type -> Type -> Expression PredType prelMap a b = preludeFun [TypeArrow a b, listType a] (listType b) "map" prelFoldr :: Type -> Type -> Expression PredType prelFoldr a b = preludeFun [TypeArrow a (TypeArrow b b), b, listType a] b "foldr" prelAppend :: Type -> Expression PredType prelAppend a = preludeFun [listType a, listType a] (listType a) "++" prelConcatMap :: Type -> Type -> Expression PredType prelConcatMap a b = preludeFun [TypeArrow a (listType b), listType a] (listType b) "concatMap" (=:<=) :: Expression PredType -> Expression PredType -> Expression PredType e1 =:<= e2 = apply (preludeFun [typeOf e1, typeOf e2] boolType "=:<=") [e1, e2] (=:=) :: Expression PredType -> Expression PredType -> Expression PredType e1 =:= e2 = apply (preludeFun [typeOf e1, typeOf e2] boolType "=:=") [e1, e2] (&>) :: Expression PredType -> Expression PredType -> Expression PredType e1 &> e2 = apply (preludeFun [boolType, typeOf e2] (typeOf e2) "cond") [e1, e2] (&) :: Expression PredType -> Expression PredType -> Expression PredType e1 & e2 = apply (preludeFun [boolType, boolType] boolType "&") [e1, e2] truePat :: Pattern PredType truePat = ConstructorPattern predBoolType qTrueId [] falsePat :: Pattern PredType falsePat = ConstructorPattern predBoolType qFalseId [] -- --------------------------------------------------------------------------- -- Auxiliary definitions -- --------------------------------------------------------------------------- conType :: QualIdent -> ValueEnv -> ([Ident], ExistTypeScheme) conType c vEnv = case qualLookupValue c vEnv of [DataConstructor _ _ ls ty] -> (ls , ty) [NewtypeConstructor _ l ty] -> ([l], ty) _ -> internalError $ "Desguar.conType: " ++ show c varType :: QualIdent -> ValueEnv -> TypeScheme varType v vEnv = case qualLookupValue v vEnv of Value _ _ _ tySc : _ -> tySc Label _ _ tySc : _ -> tySc _ -> internalError $ "Desugar.varType: " ++ show v elemType :: Type -> Type elemType (TypeApply (TypeConstructor tc) ty) | tc == qListId = ty elemType ty = internalError $ "Base.Types.elemType " ++ show ty applyConstr :: PredType -> QualIdent -> [Type] -> [Expression PredType] -> Expression PredType applyConstr pty c tys = apply (Constructor (predType (foldr TypeArrow (unpredType pty) tys)) c) -- The function 'instType' instantiates the universally quantified -- type variables of a type scheme with fresh type variables. Since this -- function is used only to instantiate the closed types of record -- constructors (recall that no existentially quantified type -- variables are allowed for records), the compiler can reuse the same -- monomorphic type variables for every instantiated type. instType :: ExistTypeScheme -> Type instType (ForAllExist _ _ pty) = inst $ unpredType pty where inst (TypeConstructor tc) = TypeConstructor tc inst (TypeApply ty1 ty2) = TypeApply (inst ty1) (inst ty2) inst (TypeVariable tv) = TypeVariable (-1 - tv) inst (TypeArrow ty1 ty2) = TypeArrow (inst ty1) (inst ty2) inst ty = ty -- Retrieve all constructors of a type constructors :: QualIdent -> DsM [DataConstr] constructors tc = getTyConsEnv >>= \tcEnv -> return $ case qualLookupTypeInfo tc tcEnv of [DataType _ _ cs] -> cs [RenamingType _ _ nc] -> [nc] _ -> internalError $ "Transformations.Desugar.constructors: " ++ show tc -- The function 'argumentTypes' returns the labels and the argument types -- of a data constructor instantiated at a particular type. argumentTypes :: Type -> QualIdent -> ValueEnv -> ([QualIdent], [Type]) argumentTypes ty c vEnv = (map (qualifyLike c) ls, map (subst (matchType ty0 ty idSubst)) tys) where (ls, ForAllExist _ _ (PredType _ ty')) = conType c vEnv (tys, ty0) = arrowUnapply ty'