{-# LANGUAGE TypeOperators, TypeFamilies, GADTs, FlexibleInstances, FlexibleContexts, ViewPatterns, ScopedTypeVariables, UndecidableInstances, NoImplicitPrelude #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Category.Dialg -- License : BSD-style (see the file LICENSE) -- -- Maintainer : sjoerd@w3future.com -- Stability : experimental -- Portability : non-portable -- -- Dialg(F,G), the category of (F,G)-dialgebras and (F,G)-homomorphisms. ----------------------------------------------------------------------------- module Data.Category.Dialg where import Data.Category import Data.Category.Functor import Data.Category.NaturalTransformation import Data.Category.Limit import Data.Category.Product import Data.Category.Monoidal import qualified Data.Category.Adjunction as A -- | Objects of Dialg(F,G) are (F,G)-dialgebras. data Dialgebra f g a where Dialgebra :: (Category c, Category d, Dom f ~ c, Dom g ~ c, Cod f ~ d, Cod g ~ d, Functor f, Functor g) => Obj c a -> d (f :% a) (g :% a) -> Dialgebra f g a -- | Arrows of Dialg(F,G) are (F,G)-homomorphisms. data Dialg f g a b where DialgA :: (Category c, Category d, Dom f ~ c, Dom g ~ c, Cod f ~ d, Cod g ~ d, Functor f, Functor g) => Dialgebra f g a -> Dialgebra f g b -> c a b -> Dialg f g a b dialgId :: Dialgebra f g a -> Obj (Dialg f g) a dialgId d@(Dialgebra a _) = DialgA d d a dialgebra :: Obj (Dialg f g) a -> Dialgebra f g a dialgebra (DialgA d _ _) = d -- | The category of (F,G)-dialgebras. instance Category (Dialg f g) where src (DialgA s _ _) = dialgId s tgt (DialgA _ t _) = dialgId t DialgA _ t f . DialgA s _ g = DialgA s t (f . g) type Alg f = Dialg f (Id (Dom f)) type Algebra f a = Dialgebra f (Id (Dom f)) a type Coalg f = Dialg (Id (Dom f)) f type Coalgebra f a = Dialgebra (Id (Dom f)) f a -- | The initial F-algebra is the initial object in the category of F-algebras. type InitialFAlgebra f = InitialObject (Alg f) -- | The terminal F-coalgebra is the terminal object in the category of F-coalgebras. type TerminalFAlgebra f = TerminalObject (Coalg f) -- | A catamorphism of an F-algebra is the arrow to it from the initial F-algebra. type Cata f a = Algebra f a -> Alg f (InitialFAlgebra f) a -- | A anamorphism of an F-coalgebra is the arrow from it to the terminal F-coalgebra. type Ana f a = Coalgebra f a -> Coalg f a (TerminalFAlgebra f) data NatNum = Z () | S NatNum primRec :: (() -> t) -> (t -> t) -> NatNum -> t primRec z _ (Z ()) = z () primRec z s (S n) = s (primRec z s n) -- | The category for defining the natural numbers and primitive recursion can be described as -- @Dialg(F,G)@, with @F(A)=\<1,A>@ and @G(A)=\@. instance HasInitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) where type InitialObject (Dialg (Tuple1 (->) (->) ()) (DiagProd (->))) = NatNum initialObject = dialgId (Dialgebra (\x -> x) (Z :**: S)) initialize (dialgebra -> d@(Dialgebra _ (z :**: s))) = DialgA (dialgebra initialObject) d (primRec z s) data FreeAlg m = FreeAlg (Monad m) -- | @FreeAlg@ M takes @x@ to the free algebra @(M x, mu_x)@ of the monad @M@. instance (Functor m, Dom m ~ k, Cod m ~ k) => Functor (FreeAlg m) where type Dom (FreeAlg m) = Dom m type Cod (FreeAlg m) = Alg m type FreeAlg m :% a = m :% a FreeAlg m % f = DialgA (alg (src f)) (alg (tgt f)) (monadFunctor m % f) where alg :: Obj k x -> Algebra m (m :% x) alg x = Dialgebra (monadFunctor m % x) (multiply m ! x) data ForgetAlg m = ForgetAlg -- | @ForgetAlg m@ is the forgetful functor for @Alg m@. instance (Functor m, Dom m ~ k, Cod m ~ k) => Functor (ForgetAlg m) where type Dom (ForgetAlg m) = Alg m type Cod (ForgetAlg m) = Dom m type ForgetAlg m :% a = a ForgetAlg % DialgA _ _ f = f eilenbergMooreAdj :: (Functor m, Dom m ~ k, Cod m ~ k) => Monad m -> A.Adjunction (Alg m) k (FreeAlg m) (ForgetAlg m) eilenbergMooreAdj m = A.mkAdjunction (FreeAlg m) ForgetAlg (\x -> unit m ! x) (\(DialgA (Dialgebra _ h) _ _) -> DialgA (Dialgebra (src h) (monadFunctor m % h)) (Dialgebra (tgt h) h) h)