data-foldapp-0.1.1.0: Fold function applications. Framework for variadic functions.

Safe HaskellSafe
LanguageHaskell2010

Data.FoldApp.Generic

Description

The most generic definitions for folding function applications.

Synopsis

Documentation

class Converter (conv :: * -> * -> Constraint) where Source #

Class of constraints which feature a function to convert a value of one type to a value of another.

Minimal complete definition

convert

Methods

convert :: conv a b => a -> b Source #

Instances

Converter ((~) *) Source # 

Methods

convert :: (* ~ a) b => a -> b Source #

class (Converter conv, Infer conv p r f) => FoldlApp (conv :: * -> * -> Constraint) (p :: *) (r :: *) (f :: *) where Source #

Class defining left-associative folds of function applications. No other instances need be defined.

Minimal complete definition

foldlApp

Methods

foldlApp :: (r -> p -> r) -> r -> f Source #

Left-associative fold of function applications.

Instances

(Converter conv, Infer conv p r r) => FoldlApp conv p r r Source # 

Methods

foldlApp :: (r -> p -> r) -> r -> r Source #

(Converter conv, Infer conv p r (x -> f), FoldlApp conv p r f) => FoldlApp conv p r (x -> f) Source # 

Methods

foldlApp :: (r -> p -> r) -> r -> x -> f Source #

class (Converter conv, Infer conv p r f) => FoldrApp (conv :: * -> * -> Constraint) (p :: *) (r :: *) (f :: *) Source #

Class defining right-associative folds of function applications. No other instances need be defined.

Minimal complete definition

foldrAppImpl

Instances

(Converter conv, Infer conv p r r) => FoldrApp conv p r r Source # 

Methods

foldrAppImpl :: (p -> r -> r) -> (r -> r) -> r -> r

(Converter conv, Infer conv p r (x -> f), FoldrApp conv p r f) => FoldrApp conv p r (x -> f) Source # 

Methods

foldrAppImpl :: (p -> r -> r) -> (r -> r) -> r -> x -> f

class Applicative m => Monad (m :: * -> *) #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following laws:

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Instances

Monad []

Since: 2.1

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

fail :: String -> [a] #

Monad Maybe

Since: 2.1

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Monad IO

Since: 2.1

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Monad NonEmpty

Since: 4.9.0.0

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

fail :: String -> NonEmpty a #

Monad Dual

Since: 4.8.0.0

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

fail :: String -> Dual a #

Monad Sum

Since: 4.8.0.0

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

fail :: String -> Sum a #

Monad Product

Since: 4.8.0.0

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

fail :: String -> Product a #

Monad First 

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

fail :: String -> First a #

Monad Last 

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

fail :: String -> Last a #

Monad Seq 

Methods

(>>=) :: Seq a -> (a -> Seq b) -> Seq b #

(>>) :: Seq a -> Seq b -> Seq b #

return :: a -> Seq a #

fail :: String -> Seq a #

Monoid a => Monad ((,) a)

Since: 4.9.0.0

Methods

(>>=) :: (a, a) -> (a -> (a, b)) -> (a, b) #

(>>) :: (a, a) -> (a, b) -> (a, b) #

return :: a -> (a, a) #

fail :: String -> (a, a) #

Monad m => Monad (WrappedMonad m) 

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

fail :: String -> WrappedMonad m a #

ArrowApply a => Monad (ArrowMonad a)

Since: 2.1

Methods

(>>=) :: ArrowMonad a a -> (a -> ArrowMonad a b) -> ArrowMonad a b #

(>>) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a b #

return :: a -> ArrowMonad a a #

fail :: String -> ArrowMonad a a #

Monad (State s) 

Methods

(>>=) :: State s a -> (a -> State s b) -> State s b #

(>>) :: State s a -> State s b -> State s b #

return :: a -> State s a #

fail :: String -> State s a #

Monad f => Monad (Alt * f) 

Methods

(>>=) :: Alt * f a -> (a -> Alt * f b) -> Alt * f b #

(>>) :: Alt * f a -> Alt * f b -> Alt * f b #

return :: a -> Alt * f a #

fail :: String -> Alt * f a #

(Applicative f, Monad f) => Monad (WhenMissing f x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)).

Methods

(>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b #

(>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b #

return :: a -> WhenMissing f x a #

fail :: String -> WhenMissing f x a #

Monad ((->) LiftedRep LiftedRep r)

Since: 2.1

Methods

(>>=) :: (LiftedRep -> LiftedRep) r a -> (a -> (LiftedRep -> LiftedRep) r b) -> (LiftedRep -> LiftedRep) r b #

(>>) :: (LiftedRep -> LiftedRep) r a -> (LiftedRep -> LiftedRep) r b -> (LiftedRep -> LiftedRep) r b #

return :: a -> (LiftedRep -> LiftedRep) r a #

fail :: String -> (LiftedRep -> LiftedRep) r a #

(Monad f, Applicative f) => Monad (WhenMatched f x y)

Equivalent to ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))

Methods

(>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b #

(>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b #

return :: a -> WhenMatched f x y a #

fail :: String -> WhenMatched f x y a #

(Applicative f, Monad f) => Monad (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Methods

(>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b #

(>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b #

return :: a -> WhenMissing f k x a #

fail :: String -> WhenMissing f k x a #

(Monad f, Applicative f) => Monad (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Methods

(>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b #

(>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b #

return :: a -> WhenMatched f k x y a #

fail :: String -> WhenMatched f k x y a #

foldlMApp :: forall conv m p r f. (Monad m, FoldlApp conv p (m r) f) => (r -> p -> m r) -> r -> f Source #

Monadic left-associative fold of function applications.

foldrApp :: forall conv p r f. FoldrApp conv p r f => (p -> r -> r) -> r -> f Source #

Right-associative fold of function applications.

foldrMApp :: forall conv m p r f. (Monad m, FoldrApp conv p (m r) f) => (p -> r -> m r) -> r -> f Source #

Monadic right-associative fold of function applications.