{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# OPTIONS_GHC -Wall #-} {-| This module contains the core calculus for the Dhall language. Dhall is essentially a fork of the @morte@ compiler but with more built-in functionality, better error messages, and Haskell integration -} module Dhall.Core ( -- * Syntax Const(..) , HasHome(..) , PathType(..) , PathMode(..) , Path(..) , Var(..) , Expr(..) -- * Normalization , normalize , subst , shift , isNormalized -- * Pretty-printing , pretty -- * Miscellaneous , internalError ) where #if MIN_VERSION_base(4,8,0) #else import Control.Applicative (Applicative(..), (<$>)) #endif import Data.Bifunctor (Bifunctor(..)) import Data.Foldable import Data.Map (Map) import Data.Monoid ((<>)) import Data.String (IsString(..)) import Data.Text.Buildable (Buildable(..)) import Data.Text.Lazy (Text) import Data.Text.Lazy.Builder (Builder) import Data.Traversable import Data.Vector (Vector) import Filesystem.Path.CurrentOS (FilePath) import Numeric.Natural (Natural) import Prelude hiding (FilePath, succ) import qualified Control.Monad import qualified Data.Map import qualified Data.Maybe import qualified Data.Text import qualified Data.Text.Lazy as Text import qualified Data.Text.Lazy.Builder as Builder import qualified Data.Vector import qualified Data.Vector.Mutable import qualified Filesystem.Path.CurrentOS as Filesystem import qualified NeatInterpolation {-| Constants for a pure type system The only axiom is: > ⊦ Type : Kind ... and the valid rule pairs are: > ⊦ Type ↝ Type : Type -- Functions from terms to terms (ordinary functions) > ⊦ Kind ↝ Type : Type -- Functions from types to terms (polymorphic functions) > ⊦ Kind ↝ Kind : Kind -- Functions from types to types (type constructors) These are the same rule pairs as System Fω Note that Dhall does not support functions from terms to types and therefore Dhall is not a dependently typed language -} data Const = Type | Kind deriving (Show, Bounded, Enum) instance Buildable Const where build = buildConst -- | Whether or not a path is relative to the user's home directory data HasHome = Home | Homeless deriving (Eq, Ord, Show) -- | The type of path to import (i.e. local vs. remote vs. environment) data PathType = File HasHome FilePath -- ^ Local path | URL Text -- ^ Remote resource | Env Text -- ^ Environment variable deriving (Eq, Ord, Show) instance Buildable PathType where build (File Home file) = "~/" <> build txt where txt = Text.fromStrict (either id id (Filesystem.toText file)) build (File Homeless file) | Text.isPrefixOf "./" txt || Text.isPrefixOf "/" txt || Text.isPrefixOf "../" txt = build txt <> " " | otherwise = "./" <> build txt <> " " where txt = Text.fromStrict (either id id (Filesystem.toText file)) build (URL str ) = build str <> " " build (Env env ) = "env:" <> build env -- | How to interpret the path's contents (i.e. as Dhall code or raw text) data PathMode = Code | RawText deriving (Eq, Ord, Show) -- | Path to an external resource data Path = Path { pathType :: PathType , pathMode :: PathMode } deriving (Eq, Ord, Show) instance Buildable Path where build (Path {..}) = build pathType <> suffix where suffix = case pathMode of RawText -> "as Text" Code -> "" {-| Label for a bound variable The `Text` field is the variable's name (i.e. \"@x@\"). The `Int` field disambiguates variables with the same name if there are multiple bound variables of the same name in scope. Zero refers to the nearest bound variable and the index increases by one for each bound variable of the same name going outward. The following diagram may help: > ┌──refers to──┐ > │ │ > v │ > λ(x : Type) → λ(y : Type) → λ(x : Type) → x@0 > > ┌─────────────────refers to─────────────────┐ > │ │ > v │ > λ(x : Type) → λ(y : Type) → λ(x : Type) → x@1 This `Int` behaves like a De Bruijn index in the special case where all variables have the same name. You can optionally omit the index if it is @0@: > ┌─refers to─┐ > │ │ > v │ > λ(x : Type) → λ(y : Type) → λ(x : Type) → x Zero indices are omitted when pretty-printing `Var`s and non-zero indices appear as a numeric suffix. -} data Var = V Text !Integer deriving (Eq, Show) instance IsString Var where fromString str = V (fromString str) 0 instance Buildable Var where build = buildVar -- | Syntax tree for expressions data Expr s a -- | > Const c ~ c = Const Const -- | > Var (V x 0) ~ x -- > Var (V x n) ~ x@n | Var Var -- | > Lam x A b ~ λ(x : A) -> b | Lam Text (Expr s a) (Expr s a) -- | > Pi "_" A B ~ A -> B -- > Pi x A B ~ ∀(x : A) -> B | Pi Text (Expr s a) (Expr s a) -- | > App f a ~ f a | App (Expr s a) (Expr s a) -- | > Let x Nothing r e ~ let x = r in e -- > Let x (Just t) r e ~ let x : t = r in e | Let Text (Maybe (Expr s a)) (Expr s a) (Expr s a) -- | > Annot x t ~ x : t | Annot (Expr s a) (Expr s a) -- | > Bool ~ Bool | Bool -- | > BoolLit b ~ b | BoolLit Bool -- | > BoolAnd x y ~ x && y | BoolAnd (Expr s a) (Expr s a) -- | > BoolOr x y ~ x || y | BoolOr (Expr s a) (Expr s a) -- | > BoolEQ x y ~ x == y | BoolEQ (Expr s a) (Expr s a) -- | > BoolNE x y ~ x != y | BoolNE (Expr s a) (Expr s a) -- | > BoolIf x y z ~ if x then y else z | BoolIf (Expr s a) (Expr s a) (Expr s a) -- | > Natural ~ Natural | Natural -- | > NaturalLit n ~ +n | NaturalLit Natural -- | > NaturalFold ~ Natural/fold | NaturalFold -- | > NaturalBuild ~ Natural/build | NaturalBuild -- | > NaturalIsZero ~ Natural/isZero | NaturalIsZero -- | > NaturalEven ~ Natural/even | NaturalEven -- | > NaturalOdd ~ Natural/odd | NaturalOdd -- | > NaturalPlus x y ~ x + y | NaturalPlus (Expr s a) (Expr s a) -- | > NaturalTimes x y ~ x * y | NaturalTimes (Expr s a) (Expr s a) -- | > Integer ~ Integer | Integer -- | > IntegerLit n ~ n | IntegerLit Integer -- | > Double ~ Double | Double -- | > DoubleLit n ~ n | DoubleLit Double -- | > Text ~ Text | Text -- | > TextLit t ~ t | TextLit Builder -- | > TextAppend x y ~ x ++ y | TextAppend (Expr s a) (Expr s a) -- | > List ~ List | List -- | > ListLit (Just t ) [x, y, z] ~ [x, y, z] : List t -- > ListLit Nothing [x, y, z] ~ [x, y, z] | ListLit (Maybe (Expr s a)) (Vector (Expr s a)) -- | > ListBuild ~ List/build | ListBuild -- | > ListFold ~ List/fold | ListFold -- | > ListLength ~ List/length | ListLength -- | > ListHead ~ List/head | ListHead -- | > ListLast ~ List/last | ListLast -- | > ListIndexed ~ List/indexed | ListIndexed -- | > ListReverse ~ List/reverse | ListReverse -- | > Optional ~ Optional | Optional -- | > OptionalLit t [e] ~ [e] : Optional t -- > OptionalLit t [] ~ [] : Optional t | OptionalLit (Expr s a) (Vector (Expr s a)) -- | > OptionalFold ~ Optional/fold | OptionalFold -- | > Record [(k1, t1), (k2, t2)] ~ { k1 : t1, k2 : t1 } | Record (Map Text (Expr s a)) -- | > RecordLit [(k1, v1), (k2, v2)] ~ { k1 = v1, k2 = v2 } | RecordLit (Map Text (Expr s a)) -- | > Union [(k1, t1), (k2, t2)] ~ < k1 : t1 | k2 : t2 > | Union (Map Text (Expr s a)) -- | > UnionLit (k1, v1) [(k2, t2), (k3, t3)] ~ < k1 = t1 | k2 : t2 | k3 : t3 > | UnionLit Text (Expr s a) (Map Text (Expr s a)) -- | > Combine x y ~ x ∧ y | Combine (Expr s a) (Expr s a) -- | > Merge x y t ~ merge x y : t | Merge (Expr s a) (Expr s a) (Expr s a) -- | > Field e x ~ e.x | Field (Expr s a) Text -- | > Note s x ~ e | Note s (Expr s a) -- | > Embed path ~ path | Embed a deriving (Functor, Foldable, Traversable, Show) instance Applicative (Expr s) where pure = Embed (<*>) = Control.Monad.ap instance Monad (Expr s) where return = pure Const a >>= _ = Const a Var a >>= _ = Var a Lam a b c >>= k = Lam a (b >>= k) (c >>= k) Pi a b c >>= k = Pi a (b >>= k) (c >>= k) App a b >>= k = App (a >>= k) (b >>= k) Let a b c d >>= k = Let a (fmap (>>= k) b) (c >>= k) (d >>= k) Annot a b >>= k = Annot (a >>= k) (b >>= k) Bool >>= _ = Bool BoolLit a >>= _ = BoolLit a BoolAnd a b >>= k = BoolAnd (a >>= k) (b >>= k) BoolOr a b >>= k = BoolOr (a >>= k) (b >>= k) BoolEQ a b >>= k = BoolEQ (a >>= k) (b >>= k) BoolNE a b >>= k = BoolNE (a >>= k) (b >>= k) BoolIf a b c >>= k = BoolIf (a >>= k) (b >>= k) (c >>= k) Natural >>= _ = Natural NaturalLit a >>= _ = NaturalLit a NaturalFold >>= _ = NaturalFold NaturalBuild >>= _ = NaturalBuild NaturalIsZero >>= _ = NaturalIsZero NaturalEven >>= _ = NaturalEven NaturalOdd >>= _ = NaturalOdd NaturalPlus a b >>= k = NaturalPlus (a >>= k) (b >>= k) NaturalTimes a b >>= k = NaturalTimes (a >>= k) (b >>= k) Integer >>= _ = Integer IntegerLit a >>= _ = IntegerLit a Double >>= _ = Double DoubleLit a >>= _ = DoubleLit a Text >>= _ = Text TextLit a >>= _ = TextLit a TextAppend a b >>= k = TextAppend (a >>= k) (b >>= k) List >>= _ = List ListLit a b >>= k = ListLit (fmap (>>= k) a) (fmap (>>= k) b) ListBuild >>= _ = ListBuild ListFold >>= _ = ListFold ListLength >>= _ = ListLength ListHead >>= _ = ListHead ListLast >>= _ = ListLast ListIndexed >>= _ = ListIndexed ListReverse >>= _ = ListReverse Optional >>= _ = Optional OptionalLit a b >>= k = OptionalLit (a >>= k) (fmap (>>= k) b) OptionalFold >>= _ = OptionalFold Record a >>= k = Record (fmap (>>= k) a) RecordLit a >>= k = RecordLit (fmap (>>= k) a) Union a >>= k = Union (fmap (>>= k) a) UnionLit a b c >>= k = UnionLit a (b >>= k) (fmap (>>= k) c) Combine a b >>= k = Combine (a >>= k) (b >>= k) Merge a b c >>= k = Merge (a >>= k) (b >>= k) (c >>= k) Field a b >>= k = Field (a >>= k) b Note a b >>= k = Note a (b >>= k) Embed a >>= k = k a instance Bifunctor Expr where first _ (Const a ) = Const a first _ (Var a ) = Var a first k (Lam a b c ) = Lam a (first k b) (first k c) first k (Pi a b c ) = Pi a (first k b) (first k c) first k (App a b ) = App (first k a) (first k b) first k (Let a b c d ) = Let a (fmap (first k) b) (first k c) (first k d) first k (Annot a b ) = Annot (first k a) (first k b) first _ Bool = Bool first _ (BoolLit a ) = BoolLit a first k (BoolAnd a b ) = BoolAnd (first k a) (first k b) first k (BoolOr a b ) = BoolOr (first k a) (first k b) first k (BoolEQ a b ) = BoolEQ (first k a) (first k b) first k (BoolNE a b ) = BoolNE (first k a) (first k b) first k (BoolIf a b c ) = BoolIf (first k a) (first k b) (first k c) first _ Natural = Natural first _ (NaturalLit a ) = NaturalLit a first _ NaturalFold = NaturalFold first _ NaturalBuild = NaturalBuild first _ NaturalIsZero = NaturalIsZero first _ NaturalEven = NaturalEven first _ NaturalOdd = NaturalOdd first k (NaturalPlus a b ) = NaturalPlus (first k a) (first k b) first k (NaturalTimes a b) = NaturalTimes (first k a) (first k b) first _ Integer = Integer first _ (IntegerLit a ) = IntegerLit a first _ Double = Double first _ (DoubleLit a ) = DoubleLit a first _ Text = Text first _ (TextLit a ) = TextLit a first k (TextAppend a b ) = TextAppend (first k a) (first k b) first _ List = List first k (ListLit a b ) = ListLit (fmap (first k) a) (fmap (first k) b) first _ ListBuild = ListBuild first _ ListFold = ListFold first _ ListLength = ListLength first _ ListHead = ListHead first _ ListLast = ListLast first _ ListIndexed = ListIndexed first _ ListReverse = ListReverse first _ Optional = Optional first k (OptionalLit a b ) = OptionalLit (first k a) (fmap (first k) b) first _ OptionalFold = OptionalFold first k (Record a ) = Record (fmap (first k) a) first k (RecordLit a ) = RecordLit (fmap (first k) a) first k (Union a ) = Union (fmap (first k) a) first k (UnionLit a b c ) = UnionLit a (first k b) (fmap (first k) c) first k (Combine a b ) = Combine (first k a) (first k b) first k (Merge a b c ) = Merge (first k a) (first k b) (first k c) first k (Field a b ) = Field (first k a) b first k (Note a b ) = Note (k a) (first k b) first _ (Embed a ) = Embed a second = fmap instance IsString (Expr s a) where fromString str = Var (fromString str) {- There is a one-to-one correspondence between the builders in this section and the sub-parsers in "Dhall.Parser". Each builder is named after the corresponding parser and the relationship between builders exactly matches the relationship between parsers. This leads to the nice emergent property of automatically getting all the parentheses and precedences right. This approach has one major disadvantage: you can get an infinite loop if you add a new constructor to the syntax tree without adding a matching case the corresponding builder. -} -- | Pretty-print a value pretty :: Buildable a => a -> Text pretty = Builder.toLazyText . build -- | Builder corresponding to the @label@ token in "Dhall.Parser" buildLabel :: Text -> Builder buildLabel = build -- | Builder corresponding to the @number@ token in "Dhall.Parser" buildNumber :: Integer -> Builder buildNumber a = build (show a) -- | Builder corresponding to the @natural@ token in "Dhall.Parser" buildNatural :: Natural -> Builder buildNatural a = build (show a) -- | Builder corresponding to the @double@ token in "Dhall.Parser" buildDouble :: Double -> Builder buildDouble a = build (show a) -- | Builder corresponding to the @text@ token in "Dhall.Parser" buildText :: Builder -> Builder buildText a = build (show a) -- | Builder corresponding to the @expr@ parser in "Dhall.Parser" buildExpr :: Buildable a => Expr s a -> Builder buildExpr = buildExprA -- | Builder corresponding to the @exprA@ parser in "Dhall.Parser" buildExprA :: Buildable a => Expr s a -> Builder buildExprA (Annot a b) = buildExprB a <> " : " <> buildExprA b buildExprA (Note _ b) = buildExprA b buildExprA a = buildExprB a -- | Builder corresponding to the @exprB@ parser in "Dhall.Parser" buildExprB :: Buildable a => Expr s a -> Builder buildExprB (Lam a b c) = "λ(" <> buildLabel a <> " : " <> buildExprA b <> ") → " <> buildExprB c buildExprB (BoolIf a b c) = "if " <> buildExprA a <> " then " <> buildExprB b <> " else " <> buildExprC c buildExprB (Pi "_" b c) = buildExprC b <> " → " <> buildExprB c buildExprB (Pi a b c) = "∀(" <> buildLabel a <> " : " <> buildExprA b <> ") → " <> buildExprB c buildExprB (Let a Nothing c d) = "let " <> buildLabel a <> " = " <> buildExprA c <> " in " <> buildExprB d buildExprB (Let a (Just b) c d) = "let " <> buildLabel a <> " : " <> buildExprA b <> " = " <> buildExprA c <> " in " <> buildExprB d buildExprB (ListLit Nothing b) = "[" <> buildElems (Data.Vector.toList b) <> "]" buildExprB (ListLit (Just a) b) = "[" <> buildElems (Data.Vector.toList b) <> "] : List " <> buildExprE a buildExprB (OptionalLit a b) = "[" <> buildElems (Data.Vector.toList b) <> "] : Optional " <> buildExprE a buildExprB (Merge a b c) = "merge " <> buildExprE a <> " " <> buildExprE b <> " : " <> buildExprD c buildExprB (Note _ b) = buildExprB b buildExprB a = buildExprC a -- | Builder corresponding to the @exprC@ parser in "Dhall.Parser" buildExprC :: Buildable a => Expr s a -> Builder buildExprC = buildExprC0 -- | Builder corresponding to the @exprC0@ parser in "Dhall.Parser" buildExprC0 :: Buildable a => Expr s a -> Builder buildExprC0 (BoolOr a b) = buildExprC1 a <> " || " <> buildExprC0 b buildExprC0 (Note _ b) = buildExprC0 b buildExprC0 a = buildExprC1 a -- | Builder corresponding to the @exprC1@ parser in "Dhall.Parser" buildExprC1 :: Buildable a => Expr s a -> Builder buildExprC1 (TextAppend a b) = buildExprC2 a <> " ++ " <> buildExprC1 b buildExprC1 (Note _ b) = buildExprC1 b buildExprC1 a = buildExprC2 a -- | Builder corresponding to the @exprC2@ parser in "Dhall.Parser" buildExprC2 :: Buildable a => Expr s a -> Builder buildExprC2 (NaturalPlus a b) = buildExprC3 a <> " + " <> buildExprC2 b buildExprC2 (Note _ b) = buildExprC2 b buildExprC2 a = buildExprC3 a -- | Builder corresponding to the @exprC3@ parser in "Dhall.Parser" buildExprC3 :: Buildable a => Expr s a -> Builder buildExprC3 (BoolAnd a b) = buildExprC4 a <> " && " <> buildExprC3 b buildExprC3 (Note _ b) = buildExprC3 b buildExprC3 a = buildExprC4 a -- | Builder corresponding to the @exprC4@ parser in "Dhall.Parser" buildExprC4 :: Buildable a => Expr s a -> Builder buildExprC4 (Combine a b) = buildExprC5 a <> " ∧ " <> buildExprC4 b buildExprC4 (Note _ b) = buildExprC4 b buildExprC4 a = buildExprC5 a -- | Builder corresponding to the @exprC5@ parser in "Dhall.Parser" buildExprC5 :: Buildable a => Expr s a -> Builder buildExprC5 (NaturalTimes a b) = buildExprC6 a <> " * " <> buildExprC5 b buildExprC5 (Note _ b) = buildExprC5 b buildExprC5 a = buildExprC6 a -- | Builder corresponding to the @exprC6@ parser in "Dhall.Parser" buildExprC6 :: Buildable a => Expr s a -> Builder buildExprC6 (BoolEQ a b) = buildExprC7 a <> " == " <> buildExprC6 b buildExprC6 (Note _ b) = buildExprC6 b buildExprC6 a = buildExprC7 a -- | Builder corresponding to the @exprC7@ parser in "Dhall.Parser" buildExprC7 :: Buildable a => Expr s a -> Builder buildExprC7 (BoolNE a b) = buildExprD a <> " != " <> buildExprC7 b buildExprC7 (Note _ b) = buildExprC7 b buildExprC7 a = buildExprD a -- | Builder corresponding to the @exprD@ parser in "Dhall.Parser" buildExprD :: Buildable a => Expr s a -> Builder buildExprD (App a b) = buildExprD a <> " " <> buildExprE b buildExprD (Note _ b) = buildExprD b buildExprD a = buildExprE a -- | Builder corresponding to the @exprE@ parser in "Dhall.Parser" buildExprE :: Buildable a => Expr s a -> Builder buildExprE (Field a b) = buildExprE a <> "." <> buildLabel b buildExprE (Note _ b) = buildExprE b buildExprE a = buildExprF a -- | Builder corresponding to the @exprF@ parser in "Dhall.Parser" buildExprF :: Buildable a => Expr s a -> Builder buildExprF (Var a) = buildVar a buildExprF (Const k) = buildConst k buildExprF Bool = "Bool" buildExprF Natural = "Natural" buildExprF NaturalFold = "Natural/fold" buildExprF NaturalBuild = "Natural/build" buildExprF NaturalIsZero = "Natural/isZero" buildExprF NaturalEven = "Natural/even" buildExprF NaturalOdd = "Natural/odd" buildExprF Integer = "Integer" buildExprF Double = "Double" buildExprF Text = "Text" buildExprF List = "List" buildExprF ListBuild = "List/build" buildExprF ListFold = "List/fold" buildExprF ListLength = "List/length" buildExprF ListHead = "List/head" buildExprF ListLast = "List/last" buildExprF ListIndexed = "List/indexed" buildExprF ListReverse = "List/reverse" buildExprF Optional = "Optional" buildExprF OptionalFold = "Optional/fold" buildExprF (BoolLit True) = "True" buildExprF (BoolLit False) = "False" buildExprF (IntegerLit a) = buildNumber a buildExprF (NaturalLit a) = "+" <> buildNatural a buildExprF (DoubleLit a) = buildDouble a buildExprF (TextLit a) = buildText a buildExprF (Record a) = buildRecord a buildExprF (RecordLit a) = buildRecordLit a buildExprF (Union a) = buildUnion a buildExprF (UnionLit a b c) = buildUnionLit a b c buildExprF (Embed a) = build a buildExprF (Note _ b) = buildExprF b buildExprF a = "(" <> buildExprA a <> ")" -- | Builder corresponding to the @const@ parser in "Dhall.Parser" buildConst :: Const -> Builder buildConst Type = "Type" buildConst Kind = "Kind" -- | Builder corresponding to the @var@ parser in "Dhall.Parser" buildVar :: Var -> Builder buildVar (V x 0) = buildLabel x buildVar (V x n) = buildLabel x <> "@" <> buildNumber n -- | Builder corresponding to the @elems@ parser in "Dhall.Parser" buildElems :: Buildable a => [Expr s a] -> Builder buildElems [] = "" buildElems [a] = buildExprA a buildElems (a:bs) = buildExprA a <> ", " <> buildElems bs -- | Builder corresponding to the @recordLit@ parser in "Dhall.Parser" buildRecordLit :: Buildable a => Map Text (Expr s a) -> Builder buildRecordLit a | Data.Map.null a = "{=}" buildRecordLit a = "{ " <> buildFieldValues (Data.Map.toList a) <> " }" -- | Builder corresponding to the @fieldValues@ parser in "Dhall.Parser" buildFieldValues :: Buildable a => [(Text, Expr s a)] -> Builder buildFieldValues [] = "" buildFieldValues [a] = buildFieldValue a buildFieldValues (a:bs) = buildFieldValue a <> ", " <> buildFieldValues bs -- | Builder corresponding to the @fieldValue@ parser in "Dhall.Parser" buildFieldValue :: Buildable a => (Text, Expr s a) -> Builder buildFieldValue (a, b) = buildLabel a <> " = " <> buildExprA b -- | Builder corresponding to the @record@ parser in "Dhall.Parser" buildRecord :: Buildable a => Map Text (Expr s a) -> Builder buildRecord a | Data.Map.null a = "{}" buildRecord a = "{ " <> buildFieldTypes (Data.Map.toList a) <> " }" -- | Builder corresponding to the @fieldTypes@ parser in "Dhall.Parser" buildFieldTypes :: Buildable a => [(Text, Expr s a)] -> Builder buildFieldTypes [] = "" buildFieldTypes [a] = buildFieldType a buildFieldTypes (a:bs) = buildFieldType a <> ", " <> buildFieldTypes bs -- | Builder corresponding to the @fieldType@ parser in "Dhall.Parser" buildFieldType :: Buildable a => (Text, Expr s a) -> Builder buildFieldType (a, b) = buildLabel a <> " : " <> buildExprA b -- | Builder corresponding to the @union@ parser in "Dhall.Parser" buildUnion :: Buildable a => Map Text (Expr s a) -> Builder buildUnion a | Data.Map.null a = "<>" buildUnion a = "< " <> buildAlternativeTypes (Data.Map.toList a) <> " >" -- | Builder corresponding to the @alternativeTypes@ parser in "Dhall.Parser" buildAlternativeTypes :: Buildable a => [(Text, Expr s a)] -> Builder buildAlternativeTypes [] = "" buildAlternativeTypes [a] = buildAlternativeType a buildAlternativeTypes (a:bs) = buildAlternativeType a <> " | " <> buildAlternativeTypes bs -- | Builder corresponding to the @alternativeType@ parser in "Dhall.Parser" buildAlternativeType :: Buildable a => (Text, Expr s a) -> Builder buildAlternativeType (a, b) = buildLabel a <> " : " <> buildExprA b -- | Builder corresponding to the @unionLit@ parser in "Dhall.Parser" buildUnionLit :: Buildable a => Text -> Expr s a -> Map Text (Expr s a) -> Builder buildUnionLit a b c | Data.Map.null c = "< " <> buildLabel a <> " = " <> buildExprA b <> " >" | otherwise = "< " <> buildLabel a <> " = " <> buildExprA b <> " | " <> buildAlternativeTypes (Data.Map.toList c) <> " >" -- | Generates a syntactically valid Dhall program instance Buildable a => Buildable (Expr s a) where build = buildExpr {-| `shift` is used by both normalization and type-checking to avoid variable capture by shifting variable indices For example, suppose that you were to normalize the following expression: > λ(a : Type) → λ(x : a) → (λ(y : a) → λ(x : a) → y) x If you were to substitute @y@ with @x@ without shifting any variable indices, then you would get the following incorrect result: > λ(a : Type) → λ(x : a) → λ(x : a) → x -- Incorrect normalized form In order to substitute @x@ in place of @y@ we need to `shift` @x@ by @1@ in order to avoid being misinterpreted as the @x@ bound by the innermost lambda. If we perform that `shift` then we get the correct result: > λ(a : Type) → λ(x : a) → λ(x : a) → x@1 As a more worked example, suppose that you were to normalize the following expression: > λ(a : Type) > → λ(f : a → a → a) > → λ(x : a) > → λ(x : a) > → (λ(x : a) → f x x@1) x@1 The correct normalized result would be: > λ(a : Type) > → λ(f : a → a → a) > → λ(x : a) > → λ(x : a) > → f x@1 x The above example illustrates how we need to both increase and decrease variable indices as part of substitution: * We need to increase the index of the outer @x\@1@ to @x\@2@ before we substitute it into the body of the innermost lambda expression in order to avoid variable capture. This substitution changes the body of the lambda expression to @(f x\@2 x\@1)@ * We then remove the innermost lambda and therefore decrease the indices of both @x@s in @(f x\@2 x\@1)@ to @(f x\@1 x)@ in order to reflect that one less @x@ variable is now bound within that scope Formally, @(shift d (V x n) e)@ modifies the expression @e@ by adding @d@ to the indices of all variables named @x@ whose indices are greater than @(n + m)@, where @m@ is the number of bound variables of the same name within that scope In practice, @d@ is always @1@ or @-1@ because we either: * increment variables by @1@ to avoid variable capture during substitution * decrement variables by @1@ when deleting lambdas after substitution @n@ starts off at @0@ when substitution begins and increments every time we descend into a lambda or let expression that binds a variable of the same name in order to avoid shifting the bound variables by mistake. -} shift :: Integer -> Var -> Expr s a -> Expr t a shift _ _ (Const a) = Const a shift d (V x n) (Var (V x' n')) = Var (V x' n'') where n'' = if x == x' && n <= n' then n' + d else n' shift d (V x n) (Lam x' _A b) = Lam x' _A' b' where _A' = shift d (V x n ) _A b' = shift d (V x n') b where n' = if x == x' then n + 1 else n shift d (V x n) (Pi x' _A _B) = Pi x' _A' _B' where _A' = shift d (V x n ) _A _B' = shift d (V x n') _B where n' = if x == x' then n + 1 else n shift d v (App f a) = App f' a' where f' = shift d v f a' = shift d v a shift d (V x n) (Let f mt r e) = Let f mt' r' e' where e' = shift d (V x n') e where n' = if x == f then n + 1 else n mt' = fmap (shift d (V x n)) mt r' = shift d (V x n) r shift d v (Annot a b) = Annot a' b' where a' = shift d v a b' = shift d v b shift _ _ Bool = Bool shift _ _ (BoolLit a) = BoolLit a shift d v (BoolAnd a b) = BoolAnd a' b' where a' = shift d v a b' = shift d v b shift d v (BoolOr a b) = BoolOr a' b' where a' = shift d v a b' = shift d v b shift d v (BoolEQ a b) = BoolEQ a' b' where a' = shift d v a b' = shift d v b shift d v (BoolNE a b) = BoolNE a' b' where a' = shift d v a b' = shift d v b shift d v (BoolIf a b c) = BoolIf a' b' c' where a' = shift d v a b' = shift d v b c' = shift d v c shift _ _ Natural = Natural shift _ _ (NaturalLit a) = NaturalLit a shift _ _ NaturalFold = NaturalFold shift _ _ NaturalBuild = NaturalBuild shift _ _ NaturalIsZero = NaturalIsZero shift _ _ NaturalEven = NaturalEven shift _ _ NaturalOdd = NaturalOdd shift d v (NaturalPlus a b) = NaturalPlus a' b' where a' = shift d v a b' = shift d v b shift d v (NaturalTimes a b) = NaturalTimes a' b' where a' = shift d v a b' = shift d v b shift _ _ Integer = Integer shift _ _ (IntegerLit a) = IntegerLit a shift _ _ Double = Double shift _ _ (DoubleLit a) = DoubleLit a shift _ _ Text = Text shift _ _ (TextLit a) = TextLit a shift d v (TextAppend a b) = TextAppend a' b' where a' = shift d v a b' = shift d v b shift _ _ List = List shift d v (ListLit a b) = ListLit a' b' where a' = fmap (shift d v) a b' = fmap (shift d v) b shift _ _ ListBuild = ListBuild shift _ _ ListFold = ListFold shift _ _ ListLength = ListLength shift _ _ ListHead = ListHead shift _ _ ListLast = ListLast shift _ _ ListIndexed = ListIndexed shift _ _ ListReverse = ListReverse shift _ _ Optional = Optional shift d v (OptionalLit a b) = OptionalLit a' b' where a' = shift d v a b' = fmap (shift d v) b shift _ _ OptionalFold = OptionalFold shift d v (Record a) = Record a' where a' = fmap (shift d v) a shift d v (RecordLit a) = RecordLit a' where a' = fmap (shift d v) a shift d v (Union a) = Union a' where a' = fmap (shift d v) a shift d v (UnionLit a b c) = UnionLit a b' c' where b' = shift d v b c' = fmap (shift d v) c shift d v (Combine a b) = Combine a' b' where a' = shift d v a b' = shift d v b shift d v (Merge a b c) = Merge a' b' c' where a' = shift d v a b' = shift d v b c' = shift d v c shift d v (Field a b) = Field a' b where a' = shift d v a shift d v (Note _ b) = b' where b' = shift d v b -- The Dhall compiler enforces that all embedded values are closed expressions -- and `shift` does nothing to a closed expression shift _ _ (Embed p) = Embed p {-| Substitute all occurrences of a variable with an expression > subst x C B ~ B[x := C] -} subst :: Var -> Expr s a -> Expr t a -> Expr s a subst _ _ (Const a) = Const a subst (V x n) e (Lam y _A b) = Lam y _A' b' where _A' = subst (V x n ) e _A b' = subst (V x n') (shift 1 (V y 0) e) b n' = if x == y then n + 1 else n subst (V x n) e (Pi y _A _B) = Pi y _A' _B' where _A' = subst (V x n ) e _A _B' = subst (V x n') (shift 1 (V y 0) e) _B n' = if x == y then n + 1 else n subst v e (App f a) = App f' a' where f' = subst v e f a' = subst v e a subst v e (Var v') = if v == v' then e else Var v' subst (V x n) e (Let f mt r b) = Let f mt' r' b' where b' = subst (V x n') (shift 1 (V f 0) e) b where n' = if x == f then n + 1 else n mt' = fmap (subst (V x n) e) mt r' = subst (V x n) e r subst x e (Annot a b) = Annot a' b' where a' = subst x e a b' = subst x e b subst _ _ Bool = Bool subst _ _ (BoolLit a) = BoolLit a subst x e (BoolAnd a b) = BoolAnd a' b' where a' = subst x e a b' = subst x e b subst x e (BoolOr a b) = BoolOr a' b' where a' = subst x e a b' = subst x e b subst x e (BoolEQ a b) = BoolEQ a' b' where a' = subst x e a b' = subst x e b subst x e (BoolNE a b) = BoolNE a' b' where a' = subst x e a b' = subst x e b subst x e (BoolIf a b c) = BoolIf a' b' c' where a' = subst x e a b' = subst x e b c' = subst x e c subst _ _ Natural = Natural subst _ _ (NaturalLit a) = NaturalLit a subst _ _ NaturalFold = NaturalFold subst _ _ NaturalBuild = NaturalBuild subst _ _ NaturalIsZero = NaturalIsZero subst _ _ NaturalEven = NaturalEven subst _ _ NaturalOdd = NaturalOdd subst x e (NaturalPlus a b) = NaturalPlus a' b' where a' = subst x e a b' = subst x e b subst x e (NaturalTimes a b) = NaturalTimes a' b' where a' = subst x e a b' = subst x e b subst _ _ Integer = Integer subst _ _ (IntegerLit a) = IntegerLit a subst _ _ Double = Double subst _ _ (DoubleLit a) = DoubleLit a subst _ _ Text = Text subst _ _ (TextLit a) = TextLit a subst x e (TextAppend a b) = TextAppend a' b' where a' = subst x e a b' = subst x e b subst _ _ List = List subst x e (ListLit a b) = ListLit a' b' where a' = fmap (subst x e) a b' = fmap (subst x e) b subst _ _ ListBuild = ListBuild subst _ _ ListFold = ListFold subst _ _ ListLength = ListLength subst _ _ ListHead = ListHead subst _ _ ListLast = ListLast subst _ _ ListIndexed = ListIndexed subst _ _ ListReverse = ListReverse subst _ _ Optional = Optional subst x e (OptionalLit a b) = OptionalLit a' b' where a' = subst x e a b' = fmap (subst x e) b subst _ _ OptionalFold = OptionalFold subst x e (Record kts) = Record (fmap (subst x e) kts) subst x e (RecordLit kvs) = RecordLit (fmap (subst x e) kvs) subst x e (Union kts) = Union (fmap (subst x e) kts) subst x e (UnionLit a b kts) = UnionLit a (subst x e b) (fmap (subst x e) kts) subst x e (Combine a b) = Combine a' b' where a' = subst x e a b' = subst x e b subst x e (Merge a b c) = Merge a' b' c' where a' = subst x e a b' = subst x e b c' = subst x e c subst x e (Field a b) = Field a' b where a' = subst x e a subst x e (Note _ b) = b' where b' = subst x e b -- The Dhall compiler enforces that all embedded values are closed expressions -- and `subst` does nothing to a closed expression subst _ _ (Embed p) = Embed p {-| Reduce an expression to its normal form, performing beta reduction `normalize` does not type-check the expression. You may want to type-check expressions before normalizing them since normalization can convert an ill-typed expression into a well-typed expression. However, `normalize` will not fail if the expression is ill-typed and will leave ill-typed sub-expressions unevaluated. -} normalize :: Expr s a -> Expr t a normalize e = case e of Const k -> Const k Var v -> Var v Lam x _A b -> Lam x _A' b' where _A' = normalize _A b' = normalize b Pi x _A _B -> Pi x _A' _B' where _A' = normalize _A _B' = normalize _B App f a -> case normalize f of Lam x _A b -> normalize b'' -- Beta reduce where a' = shift 1 (V x 0) a b' = subst (V x 0) a' b b'' = shift (-1) (V x 0) b' f' -> case App f' a' of -- fold/build fusion for `List` App (App ListBuild _) (App (App ListFold _) e') -> normalize e' App (App ListFold _) (App (App ListBuild _) e') -> normalize e' -- fold/build fusion for `Natural` App NaturalBuild (App NaturalFold e') -> normalize e' App NaturalFold (App NaturalBuild e') -> normalize e' App (App (App (App NaturalFold (NaturalLit n0)) _) succ') zero -> normalize (go n0) where go !0 = zero go !n = App succ' (go (n - 1)) App NaturalBuild k | check -> NaturalLit n | otherwise -> App f' a' where labeled = normalize (App (App (App k Natural) "Succ") "Zero") n = go 0 labeled where go !m (App (Var "Succ") e') = go (m + 1) e' go !m (Var "Zero") = m go !_ _ = internalError text check = go labeled where go (App (Var "Succ") e') = go e' go (Var "Zero") = True go _ = False App NaturalIsZero (NaturalLit n) -> BoolLit (n == 0) App NaturalEven (NaturalLit n) -> BoolLit (even n) App NaturalOdd (NaturalLit n) -> BoolLit (odd n) App (App ListBuild t) k | check -> ListLit (Just t) (buildVector k') | otherwise -> App f' a' where labeled = normalize (App (App (App k (App List t)) "Cons") "Nil") k' cons nil = go labeled where go (App (App (Var "Cons") x) e') = cons x (go e') go (Var "Nil") = nil go _ = internalError text check = go labeled where go (App (App (Var "Cons") _) e') = go e' go (Var "Nil") = True go _ = False App (App (App (App (App ListFold _) (ListLit _ xs)) _) cons) nil -> normalize (Data.Vector.foldr cons' nil xs) where cons' y ys = App (App cons y) ys App (App ListLength _) (ListLit _ ys) -> NaturalLit (fromIntegral (Data.Vector.length ys)) App (App ListHead t) (ListLit _ ys) -> normalize (OptionalLit t (Data.Vector.take 1 ys)) App (App ListLast t) (ListLit _ ys) -> normalize (OptionalLit t y) where y = if Data.Vector.null ys then Data.Vector.empty else Data.Vector.singleton (Data.Vector.last ys) App (App ListIndexed t) (ListLit _ xs) -> normalize (ListLit (Just t') (fmap adapt (Data.Vector.indexed xs))) where t' = Record (Data.Map.fromList kts) where kts = [ ("index", Natural) , ("value", t) ] adapt (n, x) = RecordLit (Data.Map.fromList kvs) where kvs = [ ("index", NaturalLit (fromIntegral n)) , ("value", x) ] App (App ListReverse t) (ListLit _ xs) -> normalize (ListLit (Just t) (Data.Vector.reverse xs)) App (App (App (App (App OptionalFold _) (OptionalLit _ xs)) _) just) nothing -> normalize (maybe nothing just' (toMaybe xs)) where just' y = App just y toMaybe = Data.Maybe.listToMaybe . Data.Vector.toList _ -> App f' a' where a' = normalize a Let f _ r b -> normalize b'' where r' = shift 1 (V f 0) r b' = subst (V f 0) r' b b'' = shift (-1) (V f 0) b' Annot x _ -> normalize x Bool -> Bool BoolLit b -> BoolLit b BoolAnd x y -> case x' of BoolLit xn -> case y' of BoolLit yn -> BoolLit (xn && yn) _ -> BoolAnd x' y' _ -> BoolAnd x' y' where x' = normalize x y' = normalize y BoolOr x y -> case x' of BoolLit xn -> case y' of BoolLit yn -> BoolLit (xn || yn) _ -> BoolOr x' y' _ -> BoolOr x' y' where x' = normalize x y' = normalize y BoolEQ x y -> case x' of BoolLit xn -> case y' of BoolLit yn -> BoolLit (xn == yn) _ -> BoolEQ x' y' _ -> BoolEQ x' y' where x' = normalize x y' = normalize y BoolNE x y -> case x' of BoolLit xn -> case y' of BoolLit yn -> BoolLit (xn /= yn) _ -> BoolNE x' y' _ -> BoolNE x' y' where x' = normalize x y' = normalize y BoolIf b true false -> case normalize b of BoolLit True -> true' BoolLit False -> false' b' -> BoolIf b' true' false' where true' = normalize true false' = normalize false Natural -> Natural NaturalLit n -> NaturalLit n NaturalFold -> NaturalFold NaturalBuild -> NaturalBuild NaturalIsZero -> NaturalIsZero NaturalEven -> NaturalEven NaturalOdd -> NaturalOdd NaturalPlus x y -> case x' of NaturalLit xn -> case y' of NaturalLit yn -> NaturalLit (xn + yn) _ -> NaturalPlus x' y' _ -> NaturalPlus x' y' where x' = normalize x y' = normalize y NaturalTimes x y -> case x' of NaturalLit xn -> case y' of NaturalLit yn -> NaturalLit (xn * yn) _ -> NaturalTimes x' y' _ -> NaturalTimes x' y' where x' = normalize x y' = normalize y Integer -> Integer IntegerLit n -> IntegerLit n Double -> Double DoubleLit n -> DoubleLit n Text -> Text TextLit t -> TextLit t TextAppend x y -> case x' of TextLit xt -> case y' of TextLit yt -> TextLit (xt <> yt) _ -> TextAppend x' y' _ -> TextAppend x' y' where x' = normalize x y' = normalize y List -> List ListLit t es -> ListLit t' es' where t' = fmap normalize t es' = fmap normalize es ListBuild -> ListBuild ListFold -> ListFold ListLength -> ListLength ListHead -> ListHead ListLast -> ListLast ListIndexed -> ListIndexed ListReverse -> ListReverse Optional -> Optional OptionalLit t es -> OptionalLit t' es' where t' = normalize t es' = fmap normalize es OptionalFold -> OptionalFold Record kts -> Record kts' where kts' = fmap normalize kts RecordLit kvs -> RecordLit kvs' where kvs' = fmap normalize kvs Union kts -> Union kts' where kts' = fmap normalize kts UnionLit k v kvs -> UnionLit k v' kvs' where v' = normalize v kvs' = fmap normalize kvs Combine x0 y0 -> let combine x y = case x of RecordLit kvsX -> case y of RecordLit kvsY -> let kvs = Data.Map.unionWith combine kvsX kvsY in RecordLit (fmap normalize kvs) _ -> Combine x y _ -> Combine x y in combine (normalize x0) (normalize y0) Merge x y t -> case x' of RecordLit kvsX -> case y' of UnionLit kY vY _ -> case Data.Map.lookup kY kvsX of Just vX -> normalize (App vX vY) Nothing -> Merge x' y' t' _ -> Merge x' y' t' _ -> Merge x' y' t' where x' = normalize x y' = normalize y t' = normalize t Field r x -> case normalize r of RecordLit kvs -> case Data.Map.lookup x kvs of Just v -> normalize v Nothing -> Field (RecordLit (fmap normalize kvs)) x r' -> Field r' x Note _ e' -> normalize e' Embed a -> Embed a where -- This is to avoid a `Show` constraint on the @a@ and @s@ in the type of -- `normalize`. In theory, this might change a failing repro case into -- a successful one, but the risk of that is low enough to not warrant -- the `Show` constraint. I care more about proving at the type level -- that the @a@ and @s@ type parameters are never used e'' = bimap (\_ -> ()) (\_ -> ()) e text = "normalize (" <> Data.Text.pack (show e'') <> ")" -- | Quickly check if an expression is in normal form isNormalized :: Expr s a -> Bool isNormalized e = case shift 0 "_" e of -- `shift` is a hack to delete `Note` Const _ -> True Var _ -> True Lam _ a b -> isNormalized a && isNormalized b Pi _ a b -> isNormalized a && isNormalized b App f a -> isNormalized f && isNormalized a && case App f a of App (Lam _ _ _) _ -> False App (App ListBuild _) (App (App ListFold _) _) -> False App (App ListFold _) (App (App ListBuild _) _) -> False -- fold/build fusion for `Natural` App NaturalBuild (App NaturalFold _) -> False App NaturalFold (App NaturalBuild _) -> False App (App (App (App NaturalFold (NaturalLit _)) _) _) _ -> False App NaturalBuild k0 -> isNormalized k0 && not (check0 k0) where check0 (Lam _ _ (Lam succ _ (Lam zero _ k))) = check1 succ zero k check0 _ = False check1 succ zero (App (Var (V succ' n)) k) = succ == succ' && n == (if succ == zero then 1 else 0) && check1 succ zero k check1 _ zero (Var (V zero' 0)) = zero == zero' check1 _ _ _ = False App NaturalIsZero (NaturalLit _) -> False App NaturalEven (NaturalLit _) -> False App NaturalOdd (NaturalLit _) -> False App (App ListBuild t) k0 -> isNormalized t && isNormalized k0 && not (check0 k0) where check0 (Lam _ _ (Lam cons _ (Lam nil _ k))) = check1 cons nil k check0 _ = False check1 cons nil (App (Var (V cons' n)) k) = cons == cons' && n == (if cons == nil then 1 else 0) && check1 cons nil k check1 _ nil (Var (V nil' 0)) = nil == nil' check1 _ _ _ = False App (App (App (App (App ListFold _) (ListLit _ _)) _) _) _ -> False App (App ListLength _) (ListLit _ _) -> False App (App ListHead _) (ListLit _ _) -> False App (App ListLast _) (ListLit _ _) -> False App (App ListIndexed _) (ListLit _ _) -> False App (App ListReverse _) (ListLit _ _) -> False App (App (App (App (App OptionalFold _) (OptionalLit _ _)) _) _) _ -> False _ -> True Let _ _ _ _ -> False Annot _ _ -> False Bool -> True BoolLit _ -> True BoolAnd x y -> isNormalized x && isNormalized y && case x of BoolLit _ -> case y of BoolLit _ -> False _ -> True _ -> True BoolOr x y -> isNormalized x && isNormalized y && case x of BoolLit _ -> case y of BoolLit _ -> False _ -> True _ -> True BoolEQ x y -> isNormalized x && isNormalized y && case x of BoolLit _ -> case y of BoolLit _ -> False _ -> True _ -> True BoolNE x y -> isNormalized x && isNormalized y && case x of BoolLit _ -> case y of BoolLit _ -> False _ -> True _ -> True BoolIf b true false -> isNormalized b && case b of BoolLit _ -> False _ -> isNormalized true && isNormalized false Natural -> True NaturalLit _ -> True NaturalFold -> True NaturalBuild -> True NaturalIsZero -> True NaturalEven -> True NaturalOdd -> True NaturalPlus x y -> isNormalized x && isNormalized y && case x of NaturalLit _ -> case y of NaturalLit _ -> False _ -> True _ -> True NaturalTimes x y -> isNormalized x && isNormalized y && case x of NaturalLit _ -> case y of NaturalLit _ -> False _ -> True _ -> True Integer -> True IntegerLit _ -> True Double -> True DoubleLit _ -> True Text -> True TextLit _ -> True TextAppend x y -> isNormalized x && isNormalized y && case x of TextLit _ -> case y of TextLit _ -> False _ -> True _ -> True List -> True ListLit t es -> all isNormalized t && all isNormalized es ListBuild -> True ListFold -> True ListLength -> True ListHead -> True ListLast -> True ListIndexed -> True ListReverse -> True Optional -> True OptionalLit t es -> isNormalized t && all isNormalized es OptionalFold -> True Record kts -> all isNormalized kts RecordLit kvs -> all isNormalized kvs Union kts -> all isNormalized kts UnionLit _ v kvs -> isNormalized v && all isNormalized kvs Combine x0 y0 -> isNormalized x0 && isNormalized y0 && combine x0 y0 where combine x y = case x of RecordLit _ -> case y of RecordLit _ -> False _ -> True _ -> True Merge x y t -> isNormalized x && isNormalized y && isNormalized t && case x of RecordLit kvsX -> case y of UnionLit kY _ _ -> case Data.Map.lookup kY kvsX of Just _ -> False Nothing -> True _ -> True _ -> True Field r x -> isNormalized r && case r of RecordLit kvs -> case Data.Map.lookup x kvs of Just _ -> False Nothing -> True _ -> True Note _ e' -> isNormalized e' Embed _ -> True _ERROR :: Data.Text.Text _ERROR = "\ESC[1;31mError\ESC[0m" {-| Utility function used to throw internal errors that should never happen (in theory) but that are not enforced by the type system -} internalError :: Data.Text.Text -> forall b . b internalError text = error (Data.Text.unpack [NeatInterpolation.text| $_ERROR: Compiler bug Explanation: This error message means that there is a bug in the Dhall compiler. You didn't do anything wrong, but if you would like to see this problem fixed then you should report the bug at: https://github.com/Gabriel439/Haskell-Dhall-Library/issues Please include the following text in your bug report: ``` $text ``` |]) buildVector :: (forall x . (a -> x -> x) -> x -> x) -> Vector a buildVector f = Data.Vector.reverse (Data.Vector.create (do let cons a st = do (len, cap, mv) <- st if len < cap then do Data.Vector.Mutable.write mv len a return (len + 1, cap, mv) else do let cap' = 2 * cap mv' <- Data.Vector.Mutable.unsafeGrow mv cap' Data.Vector.Mutable.write mv' len a return (len + 1, cap', mv') let nil = do mv <- Data.Vector.Mutable.unsafeNew 1 return (0, 1, mv) (len, _, mv) <- f cons nil return (Data.Vector.Mutable.slice 0 len mv) ))