{-# LANGUAGE MultiParamTypeClasses , FlexibleInstances , GeneralizedNewtypeDeriving #-} ----------------------------------------------------------------------------- -- | -- Module : Graphics.Rendering.Diagrams.Monoids -- Copyright : (c) 2011 diagrams-core team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- Various monoid-related definitions (monoid actions, split monoids, -- applicative monoids) used in the core diagrams library. -- ----------------------------------------------------------------------------- module Graphics.Rendering.Diagrams.Monoids ( -- * Monoid actions Action(..) -- * Split monoids -- $split , Split(..), split -- * Applicative monoids , AM(..), inAM2 ) where import Graphics.Rendering.Diagrams.Util import Data.Monoid import Data.Foldable import Control.Applicative ------------------------------------------------------------ -- Monoid actions ------------------------------------------------------------ -- | Type class for monoid actions, where monoidal values of type @m@ -- \"act\" on values of another type @s@. Instances are required to -- satisfy the laws -- -- * @act mempty = id@ -- -- * @act (m1 ``mappend`` m2) = act m1 . act m2@ -- -- Additionally, if the type @s@ has any algebraic structure, @act -- m@ should be a homomorphism. For example, if @s@ is also a -- monoid we should have @act m mempty = mempty@ and @act m (s1 -- ``mappend`` s2) = (act m s1) ``mappend`` (act m s2)@. -- -- By default, @act = const id@, so for a monoidal type @M@ which -- should have no action on anything, it suffices to write -- -- > instance Action M s -- -- with no method implementations. class Action m s where -- | Convert a monoidal value of type @m@ to an action on @s@ values. act :: m -> s -> s act = const id ------------------------------------------------------------ -- Split monoids ------------------------------------------------------------ -- $split -- Sometimes we want to accumulate values from some monoid, but have -- the ability to introduce a \"split\" which separates values on -- either side. For example, this is used when accumulating -- transformations to be applied to primitive diagrams: the 'freeze' -- operation introduces a split, since only transformations occurring -- outside the freeze should be applied to attributes. infix 5 :| -- | A value of type @Split m@ is either a single @m@, or a pair of -- @m@'s separated by a divider. data Split m = M m | m :| m -- | If @m@ is a @Monoid@, then @Split m@ is a monoid which combines -- values on either side of a split, keeping only the rightmost -- split. instance Monoid m => Monoid (Split m) where mempty = M mempty (M m1) `mappend` (M m2) = M (m1 <> m2) (M m1) `mappend` (m1' :| m2) = m1 <> m1' :| m2 (m1 :| m2) `mappend` (M m2') = m1 :| m2 <> m2' (m11 :| m12) `mappend` (m21 :| m22) = m11 <> m12 <> m21 :| m22 -- | A convenient name for @mempty :| mempty@, so @a \<\> split \<\> b == a :| b@. split :: Monoid m => Split m split = mempty :| mempty -- | By default, the action of a split monoid is the same as for -- the underlying monoid, as if the split were removed. instance (Action m n) => Action (Split m) n where act (M m) n = act m n act (m1 :| m2) n = act m1 (act m2 n) ------------------------------------------------------------ -- Applicative monoids ------------------------------------------------------------ -- | A wrapper for an 'Applicative' structure containing a monoid. -- Such structures have a @Monoid@ instance based on \"idiomatic\" -- application of 'mappend' within the @Applicative@ context. -- @instance Monoid m => Monoid (e -> m)@ is one well-known special -- case. (However, the standard @Monoid@ instance for @Maybe@ is -- /not/ an instance of this pattern; nor is the standard instance -- for lists.) newtype AM f m = AM (f m) deriving (Functor, Applicative) -- | Apply a binary function inside an 'AM' newtype wrapper. inAM2 :: (f m -> f m -> f m) -> (AM f m -> AM f m -> AM f m) inAM2 g (AM f1) (AM f2) = AM (g f1 f2) -- | @f1 ``mappend`` f2@ is defined as @'mappend' '<$>' f1 '<*>' f2@. instance (Applicative f, Monoid m) => Monoid (AM f m) where mempty = pure mempty mappend = inAM2 (liftA2 mappend) {- See Applicative laws here: http://hackage.haskell.org/packages/archive/base/latest/doc/html/Control-Applicative.html#t:Applicative -} {- left identity: AM (pure mempty) `mappend` AM f = { definition } AM $ fmap mappend (pure mempty) <*> f = { naturality of pure, fmap f . pure = pure . f } AM $ pure (mappend mempty) <*> f = { monoid law (left identity) } AM $ pure id <*> f = { applicative law (identity) } AM f -} {- right identity: AM f `mappend` AM (pure mempty) = { definition } AM $ fmap mappend f <*> pure mempty = { applicative law (interchange) } AM $ pure ($mempty) <*> fmap mappend f = { applicative/functor law } AM $ pure ($mempty) <*> (pure mappend <*> f) = { applicative law (composition) } AM $ pure (.) <*> pure ($mempty) <*> pure mappend <*> f = { applicative law (homomorphism) } AM $ pure ((.) ($mempty)) <*> pure mappend <*> f = { applicative law (homomorphism) } AM $ pure (($mempty) . mappend) <*> f = { monoid law (right identity) } AM $ pure id <*> f = { applicative law (identity) } AM f -} {- associativity: (AM f1 `mappend` AM f2) `mappend` AM f3 = { definition } AM $ fmap mappend (AM f1 `mappend` AM f2) <*> f3 = { definition } AM $ fmap mappend (fmap mappend f1 <*> f2) <*> f3 = { applicative/functor law } AM $ pure mappend <*> (pure mappend <*> f1 <*> f2) <*> f3 = { applicative law (composition) } AM $ pure (.) <*> pure mappend <*> (pure mappend <*> f1) <*> f2 <*> f3 = { applicative law (homomorphism) } AM $ pure (mappend .) <*> (pure mappend <*> f1) <*> f2 <*> f3 = { applicative law (composition) } AM $ pure (.) <*> pure (mappend .) <*> pure mappend <*> f1 <*> f2 <*> f3 = { applicative law (homomorphism) } AM $ pure ((mappend .) . mappend) <*> f1 <*> f2 <*> f3 = { monoid law (associativity) } AM $ pure ((. mappend) . (.) . mappend) <*> f1 <*> f2 <*> f3 = -- XXX finish this proof (although I have no doubt it goes through) = AM f1 `mappend` (AM f2 `mappend` AM f3) -} {- \x y z -> (x `mappend` y) `mappend` z \x y -> mappend (mappend x y) \x -> mappend . (mappend x) (mappend .) . mappend -} {- \x y z -> x `mappend` (y `mappend` z) \x y z -> mappend x (mappend y z) \x y -> mappend x . mappend y \x -> ((.) (mappend x)) . mappend \x -> (.) ((.) (mappend x)) mappend \x -> (.mappend) ((.) (mappend x)) (. mappend) . (.) . mappend -} -- | An applicative monoid acts on a value of a monoidal type by -- having each element in the structure act on the value -- independently, and then folding the resulting structure. instance (Action m n, Foldable f, Functor f, Monoid n) => Action (AM f m) n where act (AM f) n = fold $ fmap (flip act n) f -- XXX need to prove that this satisfies the laws! There are other -- "obvious" instances too.