{-# LANGUAGE DeriveDataTypeable , DeriveFunctor , FlexibleContexts , GeneralizedNewtypeDeriving , NoMonomorphismRestriction , ScopedTypeVariables , StandaloneDeriving , TypeFamilies , UndecidableInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Diagrams.BoundingBox -- Copyright : (c) 2011 diagrams-lib team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- Bounding boxes are not very compositional (/e.g./ it is not -- possible to do anything sensible with them under rotation), so they -- are not used in the diagrams core. However, they do have their -- uses; this module provides definitions and functions for working -- with them. -- ----------------------------------------------------------------------------- module Diagrams.BoundingBox ( -- * Bounding boxes BoundingBox() -- * Constructing bounding boxes , emptyBox, fromCorners, fromPoint, fromPoints , boundingBox -- * Queries on bounding boxes , isEmptyBox , getCorners, getAllCorners , boxExtents, boxTransform, boxFit , contains, contains' , inside, inside', outside, outside' -- * Operations on bounding boxes , union, intersection ) where import Control.Applicative ((<$>)) import Control.Monad (join, liftM2) import Data.Map (Map, fromList, toList, fromDistinctAscList, toAscList) import qualified Data.Foldable as F import Data.Maybe (fromMaybe) import Data.VectorSpace -- (VectorSpace, Scalar, AdditiveGroup, zeroV, negateV, (^+^), (^-^)) import Data.Basis (HasBasis, Basis, decompose, recompose, basisValue) import Data.Monoid (Monoid(..)) import Data.Semigroup (Semigroup(..), Option(..)) import Data.Data (Data) import Data.Typeable (Typeable) import Diagrams.Core.Points (Point(..)) import Diagrams.Core.HasOrigin (HasOrigin(..)) import Diagrams.Core.Envelope (Enveloped(..), appEnvelope) import Diagrams.Core.V (V) import Diagrams.Core.Transform (Transformation(..), Transformable(..), HasLinearMap, (<->)) -- Unexported utility newtype newtype NonEmptyBoundingBox v = NonEmptyBoundingBox (Point v, Point v) deriving (Eq, Data, Typeable) fromNonEmpty :: NonEmptyBoundingBox v -> BoundingBox v fromNonEmpty = BoundingBox . Option . Just fromMaybeEmpty :: Maybe (NonEmptyBoundingBox v) -> BoundingBox v fromMaybeEmpty = maybe emptyBox fromNonEmpty nonEmptyCorners :: NonEmptyBoundingBox v -> (Point v, Point v) nonEmptyCorners (NonEmptyBoundingBox x) = x instance (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => Semigroup (NonEmptyBoundingBox v) where (NonEmptyBoundingBox (ul, uh)) <> (NonEmptyBoundingBox (vl, vh)) = NonEmptyBoundingBox $ mapT toPoint (combineP min ul vl, combineP max uh vh) -- | A bounding box is an axis-aligned region determined by two points -- indicating its \"lower\" and \"upper\" corners. It can also represent -- an empty bounding box - the points are wrapped in @Maybe@. newtype BoundingBox v = BoundingBox (Option (NonEmptyBoundingBox v)) deriving (Eq, Data, Typeable) deriving instance ( HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v) ) => Semigroup (BoundingBox v) deriving instance ( HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v) ) => Monoid (BoundingBox v) type instance V (BoundingBox v) = v -- Map a function on a homogenous 2-tuple. (unexported utility) mapT :: (a -> b) -> (a, a) -> (b, b) mapT f (x, y) = (f x, f y) instance ( VectorSpace v, HasBasis v, Ord (Basis v) , AdditiveGroup (Scalar v), Ord (Scalar v) ) => HasOrigin (BoundingBox v) where moveOriginTo p b = fromMaybeEmpty ( NonEmptyBoundingBox . mapT (moveOriginTo p) <$> getCorners b ) instance ( InnerSpace v, HasBasis v, Ord (Basis v) , AdditiveGroup (Scalar v), Ord (Scalar v), Floating (Scalar v) ) => Enveloped (BoundingBox v) where getEnvelope = getEnvelope . getAllCorners instance Show v => Show (BoundingBox v) where show = maybe "emptyBox" (\(l, u) -> "fromCorners " ++ show l ++ " " ++ show u) . getCorners {- TODO instance Read v => Read (BoundingBox v) where read "emptyBox" = emptyBox -} -- | An empty bounding box. This is the same thing as @mempty@, but it doesn't -- require the same type constraints that the @Monoid@ emptyBox :: BoundingBox v emptyBox = BoundingBox $ Option Nothing -- | Create a bounding box from a point that is component-wise @(<=)@ than the -- other. If this is not the case, then @mempty@ is returned. fromCorners :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => Point v -> Point v -> BoundingBox v fromCorners l h | F.and (combineP (<=) l h) = fromNonEmpty $ NonEmptyBoundingBox (l, h) | otherwise = mempty -- | Create a degenerate bounding \"box\" containing only a single point. fromPoint :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => Point v -> BoundingBox v fromPoint p = fromNonEmpty $ NonEmptyBoundingBox (p, p) -- | Create the smallest bounding box containing all the given points. fromPoints :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => [Point v] -> BoundingBox v fromPoints = mconcat . map fromPoint -- | Create a bounding box for any enveloped object (such as a diagram or path). boundingBox :: forall a. ( Enveloped a, HasBasis (V a), AdditiveGroup (V a) , Ord (Basis (V a)) ) => a -> BoundingBox (V a) boundingBox a = fromMaybeEmpty $ do env <- appEnvelope $ getEnvelope a let h = recompose $ map (\v -> (v, env $ basisValue v)) us l = recompose $ map (\v -> (v, negate . env . negateV $ basisValue v)) us return $ NonEmptyBoundingBox (P l, P h) where -- The units. Might not work if 0-components aren't reported. --TODO: Depend on Enum Basis? us = map fst $ decompose (zeroV :: V a) -- | Queries whether the BoundingBox is empty. isEmptyBox :: BoundingBox v -> Bool isEmptyBox (BoundingBox (Option Nothing)) = True isEmptyBox _ = False -- | Gets the lower and upper corners that define the bounding box. getCorners :: BoundingBox v -> Maybe (Point v, Point v) getCorners (BoundingBox p) = nonEmptyCorners <$> getOption p -- | Computes all of the corners of the bounding box. getAllCorners :: (HasBasis v, AdditiveGroup (Scalar v), Ord (Basis v)) => BoundingBox v -> [Point v] getAllCorners (BoundingBox (Option Nothing)) = [] getAllCorners (BoundingBox (Option (Just (NonEmptyBoundingBox (l, u))))) = map (P . recompose) -- Enumerate all combinations of selections of lower / higher values. . mapM (\(b, (l', u')) -> [(b, l'), (b, u')]) -- List of [(basis, (lower, upper))] . toList $ combineP (,) l u -- | Get the size of the bounding box - the vector from the (component-wise) -- lesser point to the greater point. boxExtents :: (AdditiveGroup v) => BoundingBox v -> v boxExtents = maybe zeroV (\(P l, P h) -> h ^-^ l) . getCorners -- | Create a transformation mapping points from one bounding box to the other. boxTransform :: (AdditiveGroup v, HasLinearMap v, Fractional (Scalar v), AdditiveGroup (Scalar v), Ord (Basis v)) => BoundingBox v -> BoundingBox v -> Maybe (Transformation v) boxTransform u v = do ((P ul), _) <- getCorners u ((P vl), _) <- getCorners v let lin_map = box_scale (v, u) <-> box_scale (u, v) box_scale = combineV' (*) . uncurry (combineV' (/)) . mapT boxExtents combineV' f x = toVector . combineV f x return $ Transformation lin_map lin_map (vl ^-^ box_scale (v, u) ul) -- | Transforms an enveloped thing to fit within a @BoundingBox@. If it's -- empty, then the result is also @mempty@. boxFit :: (Enveloped a, Transformable a, Monoid a, Ord (Basis (V a))) => BoundingBox (V a) -> a -> a boxFit b x = maybe mempty (`transform` x) $ boxTransform (boundingBox x) b -- | Check whether a point is contained in a bounding box (including its edges). contains :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> Point v -> Bool contains b p = maybe False check $ getCorners b where check (l, h) = F.and (combineP (<=) l p) && F.and (combineP (<=) p h) -- | Check whether a point is /strictly/ contained in a bounding box. contains' :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> Point v -> Bool contains' b p = maybe False check $ getCorners b where check (l, h) = F.and (combineP (<) l p) && F.and (combineP (<) p h) -- | Test whether the first bounding box is contained inside -- the second. inside :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> BoundingBox v -> Bool inside u v = fromMaybe False $ do (ul, uh) <- getCorners u (vl, vh) <- getCorners v return $ F.and (combineP (>=) ul vl) && F.and (combineP (<=) uh vh) -- | Test whether the first bounding box is /strictly/ contained -- inside the second. inside' :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> BoundingBox v -> Bool inside' u v = fromMaybe False $ do (ul, uh) <- getCorners u (vl, vh) <- getCorners v return $ F.and (combineP (>) ul vl) && F.and (combineP (<) uh vh) -- | Test whether the first bounding box lies outside the second -- (although they may intersect in their boundaries). outside :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> BoundingBox v -> Bool outside u v = fromMaybe True $ do (ul, uh) <- getCorners u (vl, vh) <- getCorners v return $ F.or (combineP (<=) uh vl) || F.or (combineP (>=) ul vh) -- | Test whether the first bounding box lies /strictly/ outside the second -- (they do not intersect at all). outside' :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> BoundingBox v -> Bool outside' u v = fromMaybe True $ do (ul, uh) <- getCorners u (vl, vh) <- getCorners v return $ F.or (combineP (<) uh vl) || F.or (combineP (>) ul vh) -- | Form the largest bounding box contained within this given two -- bounding boxes, or @Nothing@ if the two bounding boxes do not -- overlap at all. intersection :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> BoundingBox v -> BoundingBox v intersection u v = maybe mempty (uncurry fromCorners) $ do (ul, uh) <- getCorners u (vl, vh) <- getCorners v return $ mapT toPoint (combineP max ul vl, combineP min uh vh) -- | Form the smallest bounding box containing the given two bound union. This -- function is just an alias for @mappend@. union :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v), Ord (Scalar v)) => BoundingBox v -> BoundingBox v -> BoundingBox v union = mappend -- internals using Map (Basis v) (Scalar v) -- probably paranoia, but decompose might not always -- 1. contain basis elements whose component is zero -- 2. have basis elements in the same order fromVector :: (HasBasis v, Ord (Basis v)) => v -> Map (Basis v) (Scalar v) fromVector = fromList . decompose toVector :: HasBasis v => Map (Basis v) (Scalar v) -> v toVector = recompose . toList toPoint :: HasBasis v => Map (Basis v) (Scalar v) -> Point v toPoint = P . toVector combineV :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v)) => (Scalar v -> Scalar v -> a) -> v -> v -> Map (Basis v) a combineV f u v = combineDefault zeroV zeroV f (fromVector u) (fromVector v) combineP :: (HasBasis v, Ord (Basis v), AdditiveGroup (Scalar v)) => (Scalar v -> Scalar v -> a) -> Point v -> Point v -> Map (Basis v) a combineP f (P u) (P v) = combineV f u v combineDefault :: Ord k => a -> b -> (a -> b -> c) -> Map k a -> Map k b -> Map k c combineDefault a b f = combine g where g Nothing Nothing = f a b g Nothing (Just y) = f a y g (Just x) Nothing = f x b g (Just x) (Just y) = f x y combine :: Ord k => (Maybe a -> Maybe b -> c) -> Map k a -> Map k b -> Map k c combine f am bm = fromDistinctAscList $ merge (toAscList am) (toAscList bm) where merge [] [] = [] merge ((x,a):xs) [] = (x, f (Just a) Nothing) : merge xs [] merge [] ((y,b):ys) = (y, f Nothing (Just b)) : merge [] ys merge xs0@((x,a):xs) ys0@((y,b):ys) = case compare x y of LT -> (x, f (Just a) Nothing ) : merge xs ys0 EQ -> (x, f (Just a) (Just b)) : merge xs ys GT -> (y, f Nothing (Just b)) : merge xs0 ys