| |||||||||||

| |||||||||||

Description | |||||||||||

Simple module for computing the various moments of a list Reference: Ross, NRiC | |||||||||||

Synopsis | |||||||||||

| |||||||||||

Documentation | |||||||||||

mean :: Fractional a => [a] -> a | |||||||||||

Compute the mean of a list Mean(X) = 1/N sum(i=1..N) x_i | |||||||||||

var :: Fractional a => [a] -> a | |||||||||||

Compute the variance of a list Var(X) = sigma^2 = 1/N-1 sum(i=1..N) (x_i-mu)^2 | |||||||||||

stddev :: RealFloat a => [a] -> a | |||||||||||

Compute the standard deviation of a list StdDev(X) = sigma = sqrt (Var(X)) | |||||||||||

avgdev :: RealFloat a => [a] -> a | |||||||||||

Compute the average deviation of a list AvgDev(X) = 1/N sum(i=1..N) |x_i-mu| | |||||||||||

skew :: RealFloat a => [a] -> a | |||||||||||

Compute the skew of a list Skew(X) = 1/N sum(i=1..N) ((x_i-mu)/sigma)^3 | |||||||||||

kurtosis :: RealFloat a => [a] -> a | |||||||||||

Compute the kurtosis of a list Kurt(X) = ( 1/N sum(i=1..N) ((x_i-mu)/sigma)^4 ) - 3 | |||||||||||

Produced by Haddock version 0.8 |