{-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UnboxedTuples #-} {-# OPTIONS_GHC -fno-warn-orphans #-} ----------------------------------------------------------------------------- -- | -- Module : Numeric.Array.Family.DoubleX2 -- Copyright : (c) Artem Chirkin -- License : BSD3 -- -- Maintainer : chirkin@arch.ethz.ch -- -- ----------------------------------------------------------------------------- module Numeric.Array.Family.DoubleX2 () where #include "MachDeps.h" import GHC.Base (runRW#) import GHC.Prim import GHC.Types (Double (..), RuntimeRep (..), isTrue#) import Numeric.Array.ElementWise import Numeric.Array.Family import Numeric.Commons import Numeric.Dimensions instance Bounded DoubleX2 where maxBound = case infty of D# x -> DoubleX2# x x minBound = case negate infty of D# x -> DoubleX2# x x infty :: Double infty = read "Infinity" instance Show DoubleX2 where show (DoubleX2# a1 a2) = "{ " ++ show (D# a1) ++ ", " ++ show (D# a2) ++ " }" instance Eq DoubleX2 where DoubleX2# a1 a2 == DoubleX2# b1 b2 = isTrue# ( (a1 ==## b1) `andI#` (a2 ==## b2) ) {-# INLINE (==) #-} DoubleX2# a1 a2 /= DoubleX2# b1 b2 = isTrue# ( (a1 /=## b1) `orI#` (a2 /=## b2) ) {-# INLINE (/=) #-} -- | Implement partial ordering for `>`, `<`, `>=`, `<=` -- and lexicographical ordering for `compare` instance Ord DoubleX2 where DoubleX2# a1 a2 > DoubleX2# b1 b2 = isTrue# ( (a1 >## b1) `andI#` (a2 >## b2) ) {-# INLINE (>) #-} DoubleX2# a1 a2 < DoubleX2# b1 b2 = isTrue# ( (a1 <## b1) `andI#` (a2 <## b2) ) {-# INLINE (<) #-} DoubleX2# a1 a2 >= DoubleX2# b1 b2 = isTrue# ( (a1 >=## b1) `andI#` (a2 >=## b2) ) {-# INLINE (>=) #-} DoubleX2# a1 a2 <= DoubleX2# b1 b2 = isTrue# ( (a1 <=## b1) `andI#` (a2 <=## b2) ) {-# INLINE (<=) #-} -- | Compare lexicographically compare (DoubleX2# a1 a2) (DoubleX2# b1 b2) | isTrue# (a1 >## b1) = GT | isTrue# (a1 <## b1) = LT | isTrue# (a2 >## b2) = GT | isTrue# (a2 <## b2) = LT | otherwise = EQ {-# INLINE compare #-} -- | Element-wise minimum min (DoubleX2# a1 a2) (DoubleX2# b1 b2) = DoubleX2# (if isTrue# (a1 >## b1) then b1 else a1) (if isTrue# (a2 >## b2) then b2 else a2) {-# INLINE min #-} -- | Element-wise maximum max (DoubleX2# a1 a2) (DoubleX2# b1 b2) = DoubleX2# (if isTrue# (a1 >## b1) then a1 else b1) (if isTrue# (a2 >## b2) then a2 else b2) {-# INLINE max #-} -- | element-wise operations for vectors instance Num DoubleX2 where DoubleX2# a1 a2 + DoubleX2# b1 b2 = DoubleX2# ((+##) a1 b1) ((+##) a2 b2) {-# INLINE (+) #-} DoubleX2# a1 a2 - DoubleX2# b1 b2 = DoubleX2# ((-##) a1 b1) ((-##) a2 b2) {-# INLINE (-) #-} DoubleX2# a1 a2 * DoubleX2# b1 b2 = DoubleX2# ((*##) a1 b1) ((*##) a2 b2) {-# INLINE (*) #-} negate (DoubleX2# a1 a2) = DoubleX2# (negateDouble# a1) (negateDouble# a2) {-# INLINE negate #-} abs (DoubleX2# a1 a2) = DoubleX2# (if isTrue# (a1 >=## 0.0##) then a1 else negateDouble# a1) (if isTrue# (a2 >=## 0.0##) then a2 else negateDouble# a2) {-# INLINE abs #-} signum (DoubleX2# a1 a2) = DoubleX2# (if isTrue# (a1 >## 0.0##) then 1.0## else if isTrue# (a1 <## 0.0##) then -1.0## else 0.0## ) (if isTrue# (a2 >## 0.0##) then 1.0## else if isTrue# (a2 <## 0.0##) then -1.0## else 0.0## ) {-# INLINE signum #-} fromInteger n = case fromInteger n of D# x -> DoubleX2# x x {-# INLINE fromInteger #-} instance Fractional DoubleX2 where DoubleX2# a1 a2 / DoubleX2# b1 b2 = DoubleX2# ((/##) a1 b1) ((/##) a2 b2) {-# INLINE (/) #-} recip (DoubleX2# a1 a2) = DoubleX2# ((/##) 1.0## a1) ((/##) 1.0## a2) {-# INLINE recip #-} fromRational r = case fromRational r of D# x -> DoubleX2# x x {-# INLINE fromRational #-} instance Floating DoubleX2 where pi = DoubleX2# 3.141592653589793238## 3.141592653589793238## {-# INLINE pi #-} exp (DoubleX2# a1 a2) = DoubleX2# (expDouble# a1) (expDouble# a2) {-# INLINE exp #-} log (DoubleX2# a1 a2) = DoubleX2# (logDouble# a1) (logDouble# a2) {-# INLINE log #-} sqrt (DoubleX2# a1 a2) = DoubleX2# (sqrtDouble# a1) (sqrtDouble# a2) {-# INLINE sqrt #-} sin (DoubleX2# a1 a2) = DoubleX2# (sinDouble# a1) (sinDouble# a2) {-# INLINE sin #-} cos (DoubleX2# a1 a2) = DoubleX2# (cosDouble# a1) (cosDouble# a2) {-# INLINE cos #-} tan (DoubleX2# a1 a2) = DoubleX2# (tanDouble# a1) (tanDouble# a2) {-# INLINE tan #-} asin (DoubleX2# a1 a2) = DoubleX2# (asinDouble# a1) (asinDouble# a2) {-# INLINE asin #-} acos (DoubleX2# a1 a2) = DoubleX2# (acosDouble# a1) (acosDouble# a2) {-# INLINE acos #-} atan (DoubleX2# a1 a2) = DoubleX2# (atanDouble# a1) (atanDouble# a2) {-# INLINE atan #-} sinh (DoubleX2# a1 a2) = DoubleX2# (sinDouble# a1) (sinDouble# a2) {-# INLINE sinh #-} cosh (DoubleX2# a1 a2) = DoubleX2# (coshDouble# a1) (coshDouble# a2) {-# INLINE cosh #-} tanh (DoubleX2# a1 a2) = DoubleX2# (tanhDouble# a1) (tanhDouble# a2) {-# INLINE tanh #-} DoubleX2# a1 a2 ** DoubleX2# b1 b2 = DoubleX2# ((**##) a1 b1) ((**##) a2 b2) {-# INLINE (**) #-} logBase x y = log y / log x {-# INLINE logBase #-} asinh x = log (x + sqrt (1.0+x*x)) {-# INLINE asinh #-} acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) {-# INLINE acosh #-} atanh x = 0.5 * log ((1.0+x) / (1.0-x)) {-# INLINE atanh #-} type instance ElemRep DoubleX2 = 'DoubleRep type instance ElemPrim DoubleX2 = Double# instance PrimBytes DoubleX2 where toBytes (DoubleX2# a1 a2) = case runRW# ( \s0 -> case newByteArray# (SIZEOF_HSDOUBLE# *# 2#) s0 of (# s1, marr #) -> case writeDoubleArray# marr 0# a1 s1 of s2 -> case writeDoubleArray# marr 1# a2 s2 of s3 -> unsafeFreezeByteArray# marr s3 ) of (# _, a #) -> (# 0#, 2#, a #) {-# INLINE toBytes #-} fromBytes (# off, _, arr #) = DoubleX2# (indexDoubleArray# arr off) (indexDoubleArray# arr (off +# 1#)) {-# INLINE fromBytes #-} byteSize _ = SIZEOF_HSDOUBLE# *# 2# {-# INLINE byteSize #-} byteAlign _ = ALIGNMENT_HSDOUBLE# {-# INLINE byteAlign #-} elementByteSize _ = SIZEOF_HSDOUBLE# {-# INLINE elementByteSize #-} ix 0# (DoubleX2# a1 _) = a1 ix 1# (DoubleX2# _ a2) = a2 ix _ _ = undefined {-# INLINE ix #-} instance ElementWise (Idx '[2]) Double DoubleX2 where indexOffset# (DoubleX2# a1 _) 0# = D# a1 indexOffset# (DoubleX2# _ a2) 1# = D# a2 indexOffset# _ _ = undefined {-# INLINE indexOffset# #-} (!) (DoubleX2# a1 _) ( 1 :! Z) = D# a1 (!) (DoubleX2# _ a2) ( 2 :! Z) = D# a2 (!) _ ( _ :! Z) = undefined {-# INLINE (!) #-} broadcast (D# x) = DoubleX2# x x {-# INLINE broadcast #-} ewmap f (DoubleX2# x y) = case (f (1:!Z) (D# x), f (2:!Z) (D# y)) of (D# r1, D# r2) -> DoubleX2# r1 r2 {-# INLINE ewmap #-} ewgen f = case (f (1:!Z), f (2:!Z)) of (D# r1, D# r2) -> DoubleX2# r1 r2 {-# INLINE ewgen #-} ewgenA f = (\(D# r1) (D# r2) -> DoubleX2# r1 r2) <$> f (1:!Z) <*> f (2:!Z) {-# INLINE ewgenA #-} ewfoldl f x0 (DoubleX2# x y) = f (2:!Z) (f (1:!Z) x0 (D# x)) (D# y) {-# INLINE ewfoldl #-} ewfoldr f x0 (DoubleX2# x y) = f (1:!Z) (D# x) (f (2:!Z) (D# y) x0) {-# INLINE ewfoldr #-} elementWise f (DoubleX2# x y) = (\(D# a) (D# b) -> DoubleX2# a b) <$> f (D# x) <*> f (D# y) {-# INLINE elementWise #-} indexWise f (DoubleX2# x y) = (\(D# a) (D# b) -> DoubleX2# a b) <$> f (1:!Z) (D# x) <*> f (2:!Z) (D# y) {-# INLINE indexWise #-} update (1 :! Z) (D# q) (DoubleX2# _ y) = DoubleX2# q y update (2 :! Z) (D# q) (DoubleX2# x _) = DoubleX2# x q update (_ :! Z) _ x = x {-# INLINE update #-}