{-# LANGUAGE CPP #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE UnboxedTuples #-} module Numeric.DataFrame.Internal.Array.Family.FloatX2 (FloatX2 (..)) where import GHC.Base import Numeric.DataFrame.Internal.Array.Class import Numeric.DataFrame.Internal.Array.PrimOps import Numeric.PrimBytes data FloatX2 = FloatX2# Float# Float# instance Bounded FloatX2 where maxBound = case inftyF of F# x -> FloatX2# x x minBound = case negate inftyF of F# x -> FloatX2# x x instance Show FloatX2 where show (FloatX2# a1 a2) = "{ " ++ show (F# a1) ++ ", " ++ show (F# a2) ++ " }" instance Eq FloatX2 where FloatX2# a1 a2 == FloatX2# b1 b2 = isTrue# ( (a1 `eqFloat#` b1) `andI#` (a2 `eqFloat#` b2) ) {-# INLINE (==) #-} FloatX2# a1 a2 /= FloatX2# b1 b2 = isTrue# ( (a1 `neFloat#` b1) `orI#` (a2 `neFloat#` b2) ) {-# INLINE (/=) #-} -- | Implement partial ordering for `>`, `<`, `>=`, `<=` -- and lexicographical ordering for `compare` instance Ord FloatX2 where FloatX2# a1 a2 > FloatX2# b1 b2 = isTrue# ( (a1 `gtFloat#` b1) `andI#` (a2 `gtFloat#` b2) ) {-# INLINE (>) #-} FloatX2# a1 a2 < FloatX2# b1 b2 = isTrue# ( (a1 `ltFloat#` b1) `andI#` (a2 `ltFloat#` b2) ) {-# INLINE (<) #-} FloatX2# a1 a2 >= FloatX2# b1 b2 = isTrue# ( (a1 `geFloat#` b1) `andI#` (a2 `geFloat#` b2) ) {-# INLINE (>=) #-} FloatX2# a1 a2 <= FloatX2# b1 b2 = isTrue# ( (a1 `leFloat#` b1) `andI#` (a2 `leFloat#` b2) ) {-# INLINE (<=) #-} -- | Compare lexicographically compare (FloatX2# a1 a2) (FloatX2# b1 b2) | isTrue# (a1 `gtFloat#` b1) = GT | isTrue# (a1 `ltFloat#` b1) = LT | isTrue# (a2 `gtFloat#` b2) = GT | isTrue# (a2 `ltFloat#` b2) = LT | otherwise = EQ {-# INLINE compare #-} -- | Element-wise minimum min (FloatX2# a1 a2) (FloatX2# b1 b2) = FloatX2# (if isTrue# (a1 `gtFloat#` b1) then b1 else a1) (if isTrue# (a2 `gtFloat#` b2) then b2 else a2) {-# INLINE min #-} -- | Element-wise maximum max (FloatX2# a1 a2) (FloatX2# b1 b2) = FloatX2# (if isTrue# (a1 `gtFloat#` b1) then a1 else b1) (if isTrue# (a2 `gtFloat#` b2) then a2 else b2) {-# INLINE max #-} -- | element-wise operations for vectors instance Num FloatX2 where FloatX2# a1 a2 + FloatX2# b1 b2 = FloatX2# (plusFloat# a1 b1) (plusFloat# a2 b2) {-# INLINE (+) #-} FloatX2# a1 a2 - FloatX2# b1 b2 = FloatX2# (minusFloat# a1 b1) (minusFloat# a2 b2) {-# INLINE (-) #-} FloatX2# a1 a2 * FloatX2# b1 b2 = FloatX2# (timesFloat# a1 b1) (timesFloat# a2 b2) {-# INLINE (*) #-} negate (FloatX2# a1 a2) = FloatX2# (negateFloat# a1) (negateFloat# a2) {-# INLINE negate #-} abs (FloatX2# a1 a2) = FloatX2# (if isTrue# (a1 `geFloat#` 0.0#) then a1 else negateFloat# a1) (if isTrue# (a2 `geFloat#` 0.0#) then a2 else negateFloat# a2) {-# INLINE abs #-} signum (FloatX2# a1 a2) = FloatX2# (if isTrue# (a1 `gtFloat#` 0.0#) then 1.0# else if isTrue# (a1 `ltFloat#` 0.0#) then -1.0# else 0.0# ) (if isTrue# (a2 `gtFloat#` 0.0#) then 1.0# else if isTrue# (a2 `ltFloat#` 0.0#) then -1.0# else 0.0# ) {-# INLINE signum #-} fromInteger n = case fromInteger n of F# x -> FloatX2# x x {-# INLINE fromInteger #-} instance Fractional FloatX2 where FloatX2# a1 a2 / FloatX2# b1 b2 = FloatX2# (divideFloat# a1 b1) (divideFloat# a2 b2) {-# INLINE (/) #-} recip (FloatX2# a1 a2) = FloatX2# (divideFloat# 1.0# a1) (divideFloat# 1.0# a2) {-# INLINE recip #-} fromRational r = case fromRational r of F# x -> FloatX2# x x {-# INLINE fromRational #-} instance Floating FloatX2 where pi = FloatX2# 3.141592653589793238# 3.141592653589793238# {-# INLINE pi #-} exp (FloatX2# a1 a2) = FloatX2# (expFloat# a1) (expFloat# a2) {-# INLINE exp #-} log (FloatX2# a1 a2) = FloatX2# (logFloat# a1) (logFloat# a2) {-# INLINE log #-} sqrt (FloatX2# a1 a2) = FloatX2# (sqrtFloat# a1) (sqrtFloat# a2) {-# INLINE sqrt #-} sin (FloatX2# a1 a2) = FloatX2# (sinFloat# a1) (sinFloat# a2) {-# INLINE sin #-} cos (FloatX2# a1 a2) = FloatX2# (cosFloat# a1) (cosFloat# a2) {-# INLINE cos #-} tan (FloatX2# a1 a2) = FloatX2# (tanFloat# a1) (tanFloat# a2) {-# INLINE tan #-} asin (FloatX2# a1 a2) = FloatX2# (asinFloat# a1) (asinFloat# a2) {-# INLINE asin #-} acos (FloatX2# a1 a2) = FloatX2# (acosFloat# a1) (acosFloat# a2) {-# INLINE acos #-} atan (FloatX2# a1 a2) = FloatX2# (atanFloat# a1) (atanFloat# a2) {-# INLINE atan #-} sinh (FloatX2# a1 a2) = FloatX2# (sinhFloat# a1) (sinhFloat# a2) {-# INLINE sinh #-} cosh (FloatX2# a1 a2) = FloatX2# (coshFloat# a1) (coshFloat# a2) {-# INLINE cosh #-} tanh (FloatX2# a1 a2) = FloatX2# (tanhFloat# a1) (tanhFloat# a2) {-# INLINE tanh #-} FloatX2# a1 a2 ** FloatX2# b1 b2 = FloatX2# (powerFloat# a1 b1) (powerFloat# a2 b2) {-# INLINE (**) #-} logBase x y = log y / log x {-# INLINE logBase #-} asinh x = log (x + sqrt (1.0+x*x)) {-# INLINE asinh #-} acosh x = log (x + (x+1.0) * sqrt ((x-1.0)/(x+1.0))) {-# INLINE acosh #-} atanh x = 0.5 * log ((1.0+x) / (1.0-x)) {-# INLINE atanh #-} -- offset in bytes is S times bigger than offset in prim elements, -- when S is power of two, this is equal to shift #define BOFF_TO_PRIMOFF(off) uncheckedIShiftRL# off 2# #define ELEM_N 2 instance PrimBytes FloatX2 where getBytes (FloatX2# a1 a2) = case runRW# ( \s0 -> case newByteArray# (byteSize @FloatX2 undefined) s0 of (# s1, marr #) -> case writeFloatArray# marr 0# a1 s1 of s2 -> case writeFloatArray# marr 1# a2 s2 of s3 -> unsafeFreezeByteArray# marr s3 ) of (# _, a #) -> a {-# INLINE getBytes #-} fromBytes off arr | i <- BOFF_TO_PRIMOFF(off) = FloatX2# (indexFloatArray# arr i) (indexFloatArray# arr (i +# 1#)) {-# INLINE fromBytes #-} readBytes mba off s0 | i <- BOFF_TO_PRIMOFF(off) = case readFloatArray# mba i s0 of (# s1, a1 #) -> case readFloatArray# mba (i +# 1#) s1 of (# s2, a2 #) -> (# s2, FloatX2# a1 a2 #) {-# INLINE readBytes #-} writeBytes mba off (FloatX2# a1 a2) s | i <- BOFF_TO_PRIMOFF(off) = writeFloatArray# mba (i +# 1#) a2 ( writeFloatArray# mba i a1 s ) {-# INLINE writeBytes #-} readAddr addr s0 = case readFloatOffAddr# addr 0# s0 of (# s1, a1 #) -> case readFloatOffAddr# addr 1# s1 of (# s2, a2 #) -> (# s2, FloatX2# a1 a2 #) {-# INLINE readAddr #-} writeAddr (FloatX2# a1 a2) addr s = writeFloatOffAddr# addr 1# a2 ( writeFloatOffAddr# addr 0# a1 s ) {-# INLINE writeAddr #-} byteSize _ = byteSize @Float undefined *# ELEM_N# {-# INLINE byteSize #-} byteAlign _ = byteAlign @Float undefined {-# INLINE byteAlign #-} byteOffset _ = 0# {-# INLINE byteOffset #-} indexArray ba off | i <- off *# ELEM_N# = FloatX2# (indexFloatArray# ba i) (indexFloatArray# ba (i +# 1#)) {-# INLINE indexArray #-} readArray mba off s0 | i <- off *# ELEM_N# = case readFloatArray# mba i s0 of (# s1, a1 #) -> case readFloatArray# mba (i +# 1#) s1 of (# s2, a2 #) -> (# s2, FloatX2# a1 a2 #) {-# INLINE readArray #-} writeArray mba off (FloatX2# a1 a2) s | i <- off *# ELEM_N# = writeFloatArray# mba (i +# 1#) a2 ( writeFloatArray# mba i a1 s ) {-# INLINE writeArray #-} instance PrimArray Float FloatX2 where broadcast (F# x) = FloatX2# x x {-# INLINE broadcast #-} ix# 0# (FloatX2# a1 _) = F# a1 ix# 1# (FloatX2# _ a2) = F# a2 ix# _ _ = undefined {-# INLINE ix# #-} gen# _ f s0 = case f s0 of (# s1, F# a1 #) -> case f s1 of (# s2, F# a2 #) -> (# s2, FloatX2# a1 a2 #) upd# _ 0# (F# q) (FloatX2# _ y) = FloatX2# q y upd# _ 1# (F# q) (FloatX2# x _) = FloatX2# x q upd# _ _ _ x = x {-# INLINE upd# #-} elemOffset _ = 0# {-# INLINE elemOffset #-} elemSize0 _ = ELEM_N# {-# INLINE elemSize0 #-} fromElems off _ ba = FloatX2# (indexFloatArray# ba off) (indexFloatArray# ba (off +# 1#)) {-# INLINE fromElems #-}