;(gen-cyclic-group (map 1#(modulo (* %1 2) 11) (between 1 10))) ; (define \$z (rtu 11)) (define \$k (rtu 5)) (define \$a11 (+ z^1 z^10)) (define \$a12 (+ z^2 z^9)) (define \$a13 (+ z^3 z^8)) (define \$a14 (+ z^4 z^7)) (define \$a15 (+ z^5 z^6)) (define \$b10 (+ a11 a12 a13 a14 a15)) (define \$b10' -1);-1 (define \$b11 (+ a11 (* k a12) (* k^2 a13) (* k^3 a14) (* k^4 a15))) (define \$b12 (+ a15 (* k a11) (* k^2 a12) (* k^3 a13) (* k^4 a14)));(* k b11) (define \$b13 (+ a14 (* k a15) (* k^2 a11) (* k^3 a12) (* k^4 a13)));(* k^2 b11) (define \$b14 (+ a13 (* k a14) (* k^2 a15) (* k^3 a11) (* k^4 a12)));(* k^3 b11) (define \$b15 (+ a12 (* k a13) (* k^2 a14) (* k^3 a15) (* k^4 a11)));(* k^4 b11) b11 (* b11 b12) (rt 5 (* -1 b11 b12 b13 b14 b15)); (define \$b11' (rt 3 (+ 7 (* 21 w^2)))) (define \$b14 (+ a11 (* w a13) (* w^2 a12))) (define \$b15 (+ a12 (* w a11) (* w^2 a13)));(* w b14) (define \$b16 (+ a13 (* w a12) (* w^2 a11)));(* w^2 b14) ;(rt 3 (* b14 b15 b16));(rt 3 (+ 7 (* 21 w))) (define \$b14' (rt 3 (+ 7 (* 21 w)))) (define \$a11' (/ (+ b10' b11' b14') 3));;/ (+ -1 (rt 3 (+ 7 (* 21 w^2))) (rt 3 (+ 7 (* 21 w)))) 3) (define \$z1' (fst (q-f' 1 (* -1 a11') 1))) z1' ;(/ (+ -1 (rt 3 (+ 7 (* 21 w^2))) (rt 3 (+ 7 (* 21 w))) (sqrt (+ -35 (* -2 (rt 3 (+ 7 (* 21 w^2)))) (* -2 (rt 3 (+ 7 (* 21 w)))) (rt 3 (+ 7 (* 21 w^2)))^2 (* 2 (rt 3 (+ 7 (* 21 w^2))) (rt 3 (+ 7 (* 21 w)))) (rt 3 (+ 7 (* 21 w)))^2))) 6) (/ (+ -1 (rt 3 (+ 7 (* 21 w^2))) (rt 3 (+ 7 (* 21 w))) (sqrt (+ -35 (* -2 (rt 3 (+ 7 (* 21 w^2)))) (* -2 (rt 3 (+ 7 (* 21 w)))) (rt 3 (+ 7 (* 21 w^2)))^2 (* 2 (rt 3 (+ 7 (* 21 w^2))) (rt 3 (+ 7 (* 21 w)))) (rt 3 (+ 7 (* 21 w))) ^2)) ) 6)