;(gen-cyclic-group (map 1#(modulo (* %1 2) 5) (between 1 4))) ;{{2 4 1 3} {4 3 2 1} {3 1 4 2} {1 2 3 4}} (define \$z (rtu 5)) (define \$a11 (+ z^1 z^4)) (define \$a12 (+ z^2 z^3)) (define \$b10 (+ a11 a12)) (define \$b11 (- a11 a12)) (define \$b12 (- a12 a11)) (define \$b10' -1);-1 (define \$b11' (sqrt (** b11 2)));(sqrt 5) (define \$a11' (/ (+ b10' b11') 2));(/ (+ -1 (sqrt 5)) 2) (define \$a12' (/ (- b10' b11') 2));(/ (+ -1 (* -1 (sqrt 5))) 2) (define \$a21 (- z^1 z^4)) (define \$a22 (- z^2 z^3)) (define \$b20 (+ a21 a22)) (define \$b21 (- a21 a22)) (define \$b22 (- a22 a21)) ;(define \$b20' (sqrt (* -1 b20 b20)));(sqrt (+ (* -3 (rtu 5)^2) 4 (* -3 (rtu 5)^3) (rtu 5)^4 (rtu 5))) (define \$b20' (sqrt (+ -3 (* 4 a12')))) ;(define \$b21' (sqrt (* -1 b21 b22)));(sqrt (+ (* -1 (rtu 5)^3) (* 3 (rtu 5)^4) (* -1 (rtu 5)^2) -4 (* 3 (rtu 5)))) (define \$b21' (sqrt (+ -3 (* 4 a11')))) (define \$a21' (/ (+ b20' b21') 2)) (define \$a22' (/ (- b20' b21') 2)) (define \$z1' (/ (+ a11' a21') 2)) z1';(/ (+ -1 (sqrt 5) (sqrt (+ -5 (* -2 (sqrt 5)))) (sqrt (+ -5 (* 2 (sqrt 5))))) 4) (** (+ (sqrt (+ -5 (* -2 (sqrt 5)))) (sqrt (+ -5 (* 2 (sqrt 5))))) 2) ;(+ -10 (* 2 (sqrt (+ -5 (* -2 (sqrt 5)))) (sqrt (+ -5 (* 2 (sqrt 5)))))) (* (+ -5 (* -2 (sqrt 5))) (+ -5 (* 2 (sqrt 5))));5 ; z1' is equal to (/ (+ -1 (sqrt 5) (sqrt (+ -10 (* -2 (sqrt 5))))) 4)