;(gen-cyclic-group (map 1#(modulo (* %1 3) 7) (between 1 6))) ;{{3 6 2 5 1 4} {2 4 6 1 3 5} {6 5 4 3 2 1} {4 1 5 2 6 3} {5 3 1 6 4 2} {1 2 3 4 5 6}} (define \$z (rtu 7)) (define \$a11 (+ z^1 z^6)) (define \$a12 (+ z^2 z^5)) (define \$a13 (+ z^3 z^4)) (define \$b10 (+ a11 a12 a13)) (define \$b10' b10) b10';-1 (define \$b11 (+ a11 (* w a12) (* w^2 a13))) (define \$b12 (+ a13 (* w a11) (* w^2 a12)));(* w b11) (define \$b13 (+ a12 (* w a13) (* w^2 a11)));(* w^2 b11) (define \$b11' (rt 3 (* b11 b12 b13))) b11';(rt 3 (+ 14 (* 21 w))) (define \$b14 (+ a11 (* w a13) (* w^2 a12))) (define \$b15 (+ a12 (* w a11) (* w^2 a13)));(* w b14) (define \$b16 (+ a13 (* w a12) (* w^2 a11)));(* w^2 b14) (define \$b14' (rt 3 (* b14 b15 b16))) b14';(rt 3 (+ -7 (* -21 w))) (define \$a11' (/ (+ b10' b11' b14') 3)) a11';(/ (+ -1 (rt 3 (+ 14 (* 21 w))) (rt 3 (+ -7 (* -21 w)))) 3) (define \$z1' (fst (q-f' 1 (* -1 a11') 1))) z1';(/ (+ -1 (rt 3 (+ 14 (* 21 w))) (rt 3 (+ -7 (* -21 w))) (sqrt (+ -35 (* -2 (rt 3 (+ 14 (* 21 w)))) (* -2 (rt 3 (+ -7 (* -21 w)))) (rt 3 (+ 14 (* 21 w)))^2 (* 2 (rt 3 (+ 14 (* 21 w))) (rt 3 (+ -7 (* -21 w)))) (rt 3 (+ -7 (* -21 w)))^2))) 6) (/ (+ -1 (rt 3 (+ 14 (* 21 w))) (rt 3 (+ -7 (* -21 w))) (sqrt (+ -35 (* -2 (rt 3 (+ 14 (* 21 w)))) (* -2 (rt 3 (+ -7 (* -21 w)))) (rt 3 (+ 14 (* 21 w)))^2 (rt 3 (+ -7 (* -21 w)))^2 (* 2 (rt 3 (+ 14 (* 21 w))) (rt 3 (+ -7 (* -21 w)))) ))) 6)