;(map 1#(modulo (** 2 %1) 9) (between 1 6));{2 4 8 7 5 1} (define \$z (rtu 9)) (define \$a11 (+ z^1 z^8)) (define \$a12 (+ z^2 z^7)) (define \$a13 (+ z^4 z^5)) (define \$b10 (+ a11 a12 a13)) (define \$b10' 0) (define \$b11 (+ a11 (* w a12) (* w^2 a13))) (define \$b12 (+ a13 (* w a11) (* w^2 a12)));(* w b11) (define \$b13 (+ a12 (* w a13) (* w^2 a11)));(* w^2 b11) ;(define \$b11' (rt 3 (** b11 3))) (define \$b11' (* 3 (rt 3 w)));Calculate manually ;(** b11 3) ;=>(+ (* 18 w) (* 9 (rtu 9)^6) (* 9 (rtu 9)^6 w^2) (* 9 (rtu 9)^3) (* 9 (rtu 9)^3 w^2)) ;=>(* 27 w) (define \$b14 (+ a11 (* w a13) (* w^2 a12))) (define \$b15 (+ a12 (* w a11) (* w^2 a13)));(* w b14) (define \$b16 (+ a13 (* w a12) (* w^2 a11)));(* w^2 b14) ;(define \$b14' (rt 3 (** b14 3))) (define \$b14' (* 3 (rt 3 w^2)));Caluculate manually ;(** b14 3) ;=>(+ (* 18 w^2) (* 9 (rtu 9)^6) (* 9 (rtu 9)^6 w) (* 9 (rtu 9)^3) (* 9 (rtu 9)^3 w)) ;=>(* 27 w^2) (define \$a11' (/ (+ b10' b11' b14') 3)) a11' ;(+ (rt 3 w) (rt 3 w^2)) (define \$z1' (fst (q-f' 1 (* -1 a11') 1))) z1' ;(/ (+ (rt 3 w) (rt 3 w^2) (sqrt (+ (rt 3 w)^2 (* 2 (rt 3 w) (rt 3 w^2)) (rt 3 w^2)^2 -4))) 2) (/ (+ (rt 3 w) (rt 3 w^2) (sqrt (+ -4 (rt 3 w)^2 (rt 3 w^2)^2 (* 2 (rt 3 w) (rt 3 w^2)) ))) 2)