// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_GENERIC_PACKET_MATH_H #define EIGEN_GENERIC_PACKET_MATH_H namespace Eigen { namespace internal { /** \internal * \file GenericPacketMath.h * * Default implementation for types not supported by the vectorization. * In practice these functions are provided to make easier the writing * of generic vectorized code. */ #ifndef EIGEN_DEBUG_ALIGNED_LOAD #define EIGEN_DEBUG_ALIGNED_LOAD #endif #ifndef EIGEN_DEBUG_UNALIGNED_LOAD #define EIGEN_DEBUG_UNALIGNED_LOAD #endif #ifndef EIGEN_DEBUG_ALIGNED_STORE #define EIGEN_DEBUG_ALIGNED_STORE #endif #ifndef EIGEN_DEBUG_UNALIGNED_STORE #define EIGEN_DEBUG_UNALIGNED_STORE #endif struct default_packet_traits { enum { HasAdd = 1, HasSub = 1, HasMul = 1, HasNegate = 1, HasAbs = 1, HasAbs2 = 1, HasMin = 1, HasMax = 1, HasConj = 1, HasSetLinear = 1, HasDiv = 0, HasSqrt = 0, HasExp = 0, HasLog = 0, HasPow = 0, HasSin = 0, HasCos = 0, HasTan = 0, HasASin = 0, HasACos = 0, HasATan = 0 }; }; template struct packet_traits : default_packet_traits { typedef T type; enum { Vectorizable = 0, size = 1, AlignedOnScalar = 0 }; enum { HasAdd = 0, HasSub = 0, HasMul = 0, HasNegate = 0, HasAbs = 0, HasAbs2 = 0, HasMin = 0, HasMax = 0, HasConj = 0, HasSetLinear = 0 }; }; /** \internal \returns a + b (coeff-wise) */ template inline Packet padd(const Packet& a, const Packet& b) { return a+b; } /** \internal \returns a - b (coeff-wise) */ template inline Packet psub(const Packet& a, const Packet& b) { return a-b; } /** \internal \returns -a (coeff-wise) */ template inline Packet pnegate(const Packet& a) { return -a; } /** \internal \returns conj(a) (coeff-wise) */ template inline Packet pconj(const Packet& a) { return numext::conj(a); } /** \internal \returns a * b (coeff-wise) */ template inline Packet pmul(const Packet& a, const Packet& b) { return a*b; } /** \internal \returns a / b (coeff-wise) */ template inline Packet pdiv(const Packet& a, const Packet& b) { return a/b; } /** \internal \returns the min of \a a and \a b (coeff-wise) */ template inline Packet pmin(const Packet& a, const Packet& b) { using std::min; return (min)(a, b); } /** \internal \returns the max of \a a and \a b (coeff-wise) */ template inline Packet pmax(const Packet& a, const Packet& b) { using std::max; return (max)(a, b); } /** \internal \returns the absolute value of \a a */ template inline Packet pabs(const Packet& a) { using std::abs; return abs(a); } /** \internal \returns the bitwise and of \a a and \a b */ template inline Packet pand(const Packet& a, const Packet& b) { return a & b; } /** \internal \returns the bitwise or of \a a and \a b */ template inline Packet por(const Packet& a, const Packet& b) { return a | b; } /** \internal \returns the bitwise xor of \a a and \a b */ template inline Packet pxor(const Packet& a, const Packet& b) { return a ^ b; } /** \internal \returns the bitwise andnot of \a a and \a b */ template inline Packet pandnot(const Packet& a, const Packet& b) { return a & (!b); } /** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */ template inline Packet pload(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet version of \a *from, (un-aligned load) */ template inline Packet ploadu(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet with elements of \a *from duplicated. * For instance, for a packet of 8 elements, 4 scalar will be read from \a *from and * duplicated to form: {from[0],from[0],from[1],from[1],,from[2],from[2],,from[3],from[3]} * Currently, this function is only used for scalar * complex products. */ template inline Packet ploaddup(const typename unpacket_traits::type* from) { return *from; } /** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */ template inline Packet pset1(const typename unpacket_traits::type& a) { return a; } /** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */ template inline typename packet_traits::type plset(const Scalar& a) { return a; } /** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */ template inline void pstore(Scalar* to, const Packet& from) { (*to) = from; } /** \internal copy the packet \a from to \a *to, (un-aligned store) */ template inline void pstoreu(Scalar* to, const Packet& from) { (*to) = from; } /** \internal tries to do cache prefetching of \a addr */ template inline void prefetch(const Scalar* addr) { #if !defined(_MSC_VER) __builtin_prefetch(addr); #endif } /** \internal \returns the first element of a packet */ template inline typename unpacket_traits::type pfirst(const Packet& a) { return a; } /** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */ template inline Packet preduxp(const Packet* vecs) { return vecs[0]; } /** \internal \returns the sum of the elements of \a a*/ template inline typename unpacket_traits::type predux(const Packet& a) { return a; } /** \internal \returns the product of the elements of \a a*/ template inline typename unpacket_traits::type predux_mul(const Packet& a) { return a; } /** \internal \returns the min of the elements of \a a*/ template inline typename unpacket_traits::type predux_min(const Packet& a) { return a; } /** \internal \returns the max of the elements of \a a*/ template inline typename unpacket_traits::type predux_max(const Packet& a) { return a; } /** \internal \returns the reversed elements of \a a*/ template inline Packet preverse(const Packet& a) { return a; } /** \internal \returns \a a with real and imaginary part flipped (for complex type only) */ template inline Packet pcplxflip(const Packet& a) { // FIXME: uncomment the following in case we drop the internal imag and real functions. // using std::imag; // using std::real; return Packet(imag(a),real(a)); } /************************** * Special math functions ***************************/ /** \internal \returns the sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psin(const Packet& a) { using std::sin; return sin(a); } /** \internal \returns the cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pcos(const Packet& a) { using std::cos; return cos(a); } /** \internal \returns the tan of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet ptan(const Packet& a) { using std::tan; return tan(a); } /** \internal \returns the arc sine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pasin(const Packet& a) { using std::asin; return asin(a); } /** \internal \returns the arc cosine of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pacos(const Packet& a) { using std::acos; return acos(a); } /** \internal \returns the exp of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet pexp(const Packet& a) { using std::exp; return exp(a); } /** \internal \returns the log of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet plog(const Packet& a) { using std::log; return log(a); } /** \internal \returns the square-root of \a a (coeff-wise) */ template EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); } /*************************************************************************** * The following functions might not have to be overwritten for vectorized types ***************************************************************************/ /** \internal copy a packet with constant coeficient \a a (e.g., [a,a,a,a]) to \a *to. \a to must be 16 bytes aligned */ // NOTE: this function must really be templated on the packet type (think about different packet types for the same scalar type) template inline void pstore1(typename unpacket_traits::type* to, const typename unpacket_traits::type& a) { pstore(to, pset1(a)); } /** \internal \returns a * b + c (coeff-wise) */ template inline Packet pmadd(const Packet& a, const Packet& b, const Packet& c) { return padd(pmul(a, b),c); } /** \internal \returns a packet version of \a *from. * If LoadMode equals #Aligned, \a from must be 16 bytes aligned */ template inline Packet ploadt(const typename unpacket_traits::type* from) { if(LoadMode == Aligned) return pload(from); else return ploadu(from); } /** \internal copy the packet \a from to \a *to. * If StoreMode equals #Aligned, \a to must be 16 bytes aligned */ template inline void pstoret(Scalar* to, const Packet& from) { if(LoadMode == Aligned) pstore(to, from); else pstoreu(to, from); } /** \internal default implementation of palign() allowing partial specialization */ template struct palign_impl { // by default data are aligned, so there is nothing to be done :) static inline void run(PacketType&, const PacketType&) {} }; /** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements * of \a first and \a Offset first elements of \a second. * * This function is currently only used to optimize matrix-vector products on unligned matrices. * It takes 2 packets that represent a contiguous memory array, and returns a packet starting * at the position \a Offset. For instance, for packets of 4 elements, we have: * Input: * - first = {f0,f1,f2,f3} * - second = {s0,s1,s2,s3} * Output: * - if Offset==0 then {f0,f1,f2,f3} * - if Offset==1 then {f1,f2,f3,s0} * - if Offset==2 then {f2,f3,s0,s1} * - if Offset==3 then {f3,s0,s1,s3} */ template inline void palign(PacketType& first, const PacketType& second) { palign_impl::run(first,second); } /*************************************************************************** * Fast complex products (GCC generates a function call which is very slow) ***************************************************************************/ template<> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); } template<> inline std::complex pmul(const std::complex& a, const std::complex& b) { return std::complex(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_GENERIC_PACKET_MATH_H