// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_COMPLEX_ALTIVEC_H #define EIGEN_COMPLEX_ALTIVEC_H namespace Eigen { namespace internal { static Packet4ui p4ui_CONJ_XOR = vec_mergeh((Packet4ui)p4i_ZERO, (Packet4ui)p4f_ZERO_);//{ 0x00000000, 0x80000000, 0x00000000, 0x80000000 }; static Packet16uc p16uc_COMPLEX_RE = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 2), 8);//{ 0,1,2,3, 0,1,2,3, 8,9,10,11, 8,9,10,11 }; static Packet16uc p16uc_COMPLEX_IM = vec_sld((Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 1), (Packet16uc) vec_splat((Packet4ui)p16uc_FORWARD, 3), 8);//{ 4,5,6,7, 4,5,6,7, 12,13,14,15, 12,13,14,15 }; static Packet16uc p16uc_COMPLEX_REV = vec_sld(p16uc_REVERSE, p16uc_REVERSE, 8);//{ 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; static Packet16uc p16uc_COMPLEX_REV2 = vec_sld(p16uc_FORWARD, p16uc_FORWARD, 8);//{ 8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7 }; static Packet16uc p16uc_PSET_HI = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 0), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 1));//{ 0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7 }; static Packet16uc p16uc_PSET_LO = (Packet16uc) vec_mergeh((Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 2), (Packet4ui) vec_splat((Packet4ui)p16uc_FORWARD, 3));//{ 8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15 }; //---------- float ---------- struct Packet2cf { EIGEN_STRONG_INLINE Packet2cf() {} EIGEN_STRONG_INLINE explicit Packet2cf(const Packet4f& a) : v(a) {} Packet4f v; }; template<> struct packet_traits > : default_packet_traits { typedef Packet2cf type; enum { Vectorizable = 1, AlignedOnScalar = 1, size = 2, HasAdd = 1, HasSub = 1, HasMul = 1, HasDiv = 1, HasNegate = 1, HasAbs = 0, HasAbs2 = 0, HasMin = 0, HasMax = 0, HasSetLinear = 0 }; }; template<> struct unpacket_traits { typedef std::complex type; enum {size=2}; }; template<> EIGEN_STRONG_INLINE Packet2cf pset1(const std::complex& from) { Packet2cf res; /* On AltiVec we cannot load 64-bit registers, so wa have to take care of alignment */ if((ptrdiff_t(&from) % 16) == 0) res.v = pload((const float *)&from); else res.v = ploadu((const float *)&from); res.v = vec_perm(res.v, res.v, p16uc_PSET_HI); return res; } template<> EIGEN_STRONG_INLINE Packet2cf padd(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_add(a.v,b.v)); } template<> EIGEN_STRONG_INLINE Packet2cf psub(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_sub(a.v,b.v)); } template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a) { return Packet2cf(pnegate(a.v)); } template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a) { return Packet2cf((Packet4f)vec_xor((Packet4ui)a.v, p4ui_CONJ_XOR)); } template<> EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) { Packet4f v1, v2; // Permute and multiply the real parts of a and b v1 = vec_perm(a.v, a.v, p16uc_COMPLEX_RE); // Get the imaginary parts of a v2 = vec_perm(a.v, a.v, p16uc_COMPLEX_IM); // multiply a_re * b v1 = vec_madd(v1, b.v, p4f_ZERO); // multiply a_im * b and get the conjugate result v2 = vec_madd(v2, b.v, p4f_ZERO); v2 = (Packet4f) vec_xor((Packet4ui)v2, p4ui_CONJ_XOR); // permute back to a proper order v2 = vec_perm(v2, v2, p16uc_COMPLEX_REV); return Packet2cf(vec_add(v1, v2)); } template<> EIGEN_STRONG_INLINE Packet2cf pand (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v,b.v)); } template<> EIGEN_STRONG_INLINE Packet2cf por (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_or(a.v,b.v)); } template<> EIGEN_STRONG_INLINE Packet2cf pxor (const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_xor(a.v,b.v)); } template<> EIGEN_STRONG_INLINE Packet2cf pandnot(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(vec_and(a.v, vec_nor(b.v,b.v))); } template<> EIGEN_STRONG_INLINE Packet2cf pload (const std::complex* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload((const float*)from)); } template<> EIGEN_STRONG_INLINE Packet2cf ploadu(const std::complex* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu((const float*)from)); } template<> EIGEN_STRONG_INLINE Packet2cf ploaddup(const std::complex* from) { return pset1(*from); } template<> EIGEN_STRONG_INLINE void pstore >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((float*)to, from.v); } template<> EIGEN_STRONG_INLINE void pstoreu >(std::complex * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((float*)to, from.v); } template<> EIGEN_STRONG_INLINE void prefetch >(const std::complex * addr) { vec_dstt((float *)addr, DST_CTRL(2,2,32), DST_CHAN); } template<> EIGEN_STRONG_INLINE std::complex pfirst(const Packet2cf& a) { std::complex EIGEN_ALIGN16 res[2]; pstore((float *)&res, a.v); return res[0]; } template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { Packet4f rev_a; rev_a = vec_perm(a.v, a.v, p16uc_COMPLEX_REV2); return Packet2cf(rev_a); } template<> EIGEN_STRONG_INLINE std::complex predux(const Packet2cf& a) { Packet4f b; b = (Packet4f) vec_sld(a.v, a.v, 8); b = padd(a.v, b); return pfirst(Packet2cf(b)); } template<> EIGEN_STRONG_INLINE Packet2cf preduxp(const Packet2cf* vecs) { Packet4f b1, b2; b1 = (Packet4f) vec_sld(vecs[0].v, vecs[1].v, 8); b2 = (Packet4f) vec_sld(vecs[1].v, vecs[0].v, 8); b2 = (Packet4f) vec_sld(b2, b2, 8); b2 = padd(b1, b2); return Packet2cf(b2); } template<> EIGEN_STRONG_INLINE std::complex predux_mul(const Packet2cf& a) { Packet4f b; Packet2cf prod; b = (Packet4f) vec_sld(a.v, a.v, 8); prod = pmul(a, Packet2cf(b)); return pfirst(prod); } template struct palign_impl { static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second) { if (Offset==1) { first.v = vec_sld(first.v, second.v, 8); } } }; template<> struct conj_helper { EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const { return padd(pmul(x,y),c); } EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const { return internal::pmul(a, pconj(b)); } }; template<> struct conj_helper { EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const { return padd(pmul(x,y),c); } EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const { return internal::pmul(pconj(a), b); } }; template<> struct conj_helper { EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const { return padd(pmul(x,y),c); } EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const { return pconj(internal::pmul(a, b)); } }; template<> EIGEN_STRONG_INLINE Packet2cf pdiv(const Packet2cf& a, const Packet2cf& b) { // TODO optimize it for AltiVec Packet2cf res = conj_helper().pmul(a,b); Packet4f s = vec_madd(b.v, b.v, p4f_ZERO); return Packet2cf(pdiv(res.v, vec_add(s,vec_perm(s, s, p16uc_COMPLEX_REV)))); } template<> EIGEN_STRONG_INLINE Packet2cf pcplxflip(const Packet2cf& x) { return Packet2cf(vec_perm(x.v, x.v, p16uc_COMPLEX_REV)); } } // end namespace internal } // end namespace Eigen #endif // EIGEN_COMPLEX_ALTIVEC_H