// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_XPRHELPER_H #define EIGEN_XPRHELPER_H // just a workaround because GCC seems to not really like empty structs // FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled // so currently we simply disable this optimization for gcc 4.3 #if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3)) #define EIGEN_EMPTY_STRUCT_CTOR(X) \ EIGEN_STRONG_INLINE X() {} \ EIGEN_STRONG_INLINE X(const X& ) {} #else #define EIGEN_EMPTY_STRUCT_CTOR(X) #endif namespace Eigen { typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex; namespace internal { //classes inheriting no_assignment_operator don't generate a default operator=. class no_assignment_operator { private: no_assignment_operator& operator=(const no_assignment_operator&); }; /** \internal return the index type with the largest number of bits */ template struct promote_index_type { typedef typename conditional<(sizeof(I1)::type type; }; /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that * can be accessed using value() and setValue(). * Otherwise, this class is an empty structure and value() just returns the template parameter Value. */ template class variable_if_dynamic { public: EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic) explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); } static T value() { return T(Value); } void setValue(T) {} }; template class variable_if_dynamic { T m_value; variable_if_dynamic() { assert(false); } public: explicit variable_if_dynamic(T value) : m_value(value) {} T value() const { return m_value; } void setValue(T value) { m_value = value; } }; /** \internal like variable_if_dynamic but for DynamicIndex */ template class variable_if_dynamicindex { public: EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamicindex) explicit variable_if_dynamicindex(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); } static T value() { return T(Value); } void setValue(T) {} }; template class variable_if_dynamicindex { T m_value; variable_if_dynamicindex() { assert(false); } public: explicit variable_if_dynamicindex(T value) : m_value(value) {} T value() const { return m_value; } void setValue(T value) { m_value = value; } }; template struct functor_traits { enum { Cost = 10, PacketAccess = false, IsRepeatable = false }; }; template struct packet_traits; template struct unpacket_traits { typedef T type; enum {size=1}; }; template class make_proper_matrix_type { enum { IsColVector = _Cols==1 && _Rows!=1, IsRowVector = _Rows==1 && _Cols!=1, Options = IsColVector ? (_Options | ColMajor) & ~RowMajor : IsRowVector ? (_Options | RowMajor) & ~ColMajor : _Options }; public: typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type; }; template class compute_matrix_flags { enum { row_major_bit = Options&RowMajor ? RowMajorBit : 0, is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic, aligned_bit = ( ((Options&DontAlign)==0) && ( #if EIGEN_ALIGN_STATICALLY ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0)) #else 0 #endif || #if EIGEN_ALIGN is_dynamic_size_storage #else 0 #endif ) ) ? AlignedBit : 0, packet_access_bit = packet_traits::Vectorizable && aligned_bit ? PacketAccessBit : 0 }; public: enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit }; }; template struct size_at_compile_time { enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols }; }; /* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type, * whereas eval is a const reference in the case of a matrix */ template::StorageKind> struct plain_matrix_type; template struct plain_matrix_type_dense; template struct plain_matrix_type { typedef typename plain_matrix_type_dense::XprKind>::type type; }; template struct plain_matrix_type_dense { typedef Matrix::Scalar, traits::RowsAtCompileTime, traits::ColsAtCompileTime, AutoAlign | (traits::Flags&RowMajorBit ? RowMajor : ColMajor), traits::MaxRowsAtCompileTime, traits::MaxColsAtCompileTime > type; }; template struct plain_matrix_type_dense { typedef Array::Scalar, traits::RowsAtCompileTime, traits::ColsAtCompileTime, AutoAlign | (traits::Flags&RowMajorBit ? RowMajor : ColMajor), traits::MaxRowsAtCompileTime, traits::MaxColsAtCompileTime > type; }; /* eval : the return type of eval(). For matrices, this is just a const reference * in order to avoid a useless copy */ template::StorageKind> struct eval; template struct eval { typedef typename plain_matrix_type::type type; // typedef typename T::PlainObject type; // typedef T::Matrix::Scalar, // traits::RowsAtCompileTime, // traits::ColsAtCompileTime, // AutoAlign | (traits::Flags&RowMajorBit ? RowMajor : ColMajor), // traits::MaxRowsAtCompileTime, // traits::MaxColsAtCompileTime // > type; }; // for matrices, no need to evaluate, just use a const reference to avoid a useless copy template struct eval, Dense> { typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; }; template struct eval, Dense> { typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type; }; /* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major */ template struct plain_matrix_type_column_major { enum { Rows = traits::RowsAtCompileTime, Cols = traits::ColsAtCompileTime, MaxRows = traits::MaxRowsAtCompileTime, MaxCols = traits::MaxColsAtCompileTime }; typedef Matrix::Scalar, Rows, Cols, (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor, MaxRows, MaxCols > type; }; /* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major */ template struct plain_matrix_type_row_major { enum { Rows = traits::RowsAtCompileTime, Cols = traits::ColsAtCompileTime, MaxRows = traits::MaxRowsAtCompileTime, MaxCols = traits::MaxColsAtCompileTime }; typedef Matrix::Scalar, Rows, Cols, (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor, MaxRows, MaxCols > type; }; // we should be able to get rid of this one too template struct must_nest_by_value { enum { ret = false }; }; /** \internal The reference selector for template expressions. The idea is that we don't * need to use references for expressions since they are light weight proxy * objects which should generate no copying overhead. */ template struct ref_selector { typedef typename conditional< bool(traits::Flags & NestByRefBit), T const&, const T >::type type; }; /** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */ template struct transfer_constness { typedef typename conditional< bool(internal::is_const::value), typename internal::add_const_on_value_type::type, T2 >::type type; }; /** \internal Determines how a given expression should be nested into another one. * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes * many coefficient accesses in the nested expressions -- as is the case with matrix product for example. * * \param T the type of the expression being nested * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression. * * Note that if no evaluation occur, then the constness of T is preserved. * * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c). * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it, * the Product expression uses: nested::ret, which turns out to be Matrix3d because the internal logic of * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand, * since a is of type Matrix3d, the Product expression nests it as nested::ret, which turns out to be * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point * in copying it into another matrix. */ template::type> struct nested { enum { // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values. // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values. // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues // (poor choice of temporaries). // it's important that this value can still be squared without integer overflowing. DynamicAsInteger = 10000, ScalarReadCost = NumTraits::Scalar>::ReadCost, ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? int(DynamicAsInteger) : int(ScalarReadCost), CoeffReadCost = traits::CoeffReadCost, CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? int(DynamicAsInteger) : int(CoeffReadCost), NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n, CostEvalAsInteger = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger, CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger }; typedef typename conditional< ( (int(traits::Flags) & EvalBeforeNestingBit) || int(CostEvalAsInteger) < int(CostNoEvalAsInteger) ), PlainObject, typename ref_selector::type >::type type; }; template inline T* const_cast_ptr(const T* ptr) { return const_cast(ptr); } template::XprKind> struct dense_xpr_base { /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */ }; template struct dense_xpr_base { typedef MatrixBase type; }; template struct dense_xpr_base { typedef ArrayBase type; }; /** \internal Helper base class to add a scalar multiple operator * overloads for complex types */ template::value > struct special_scalar_op_base : public DenseCoeffsBase { // dummy operator* so that the // "using special_scalar_op_base::operator*" compiles void operator*() const; }; template struct special_scalar_op_base : public DenseCoeffsBase { const CwiseUnaryOp, Derived> operator*(const OtherScalar& scalar) const { return CwiseUnaryOp, Derived> (*static_cast(this), scalar_multiple2_op(scalar)); } inline friend const CwiseUnaryOp, Derived> operator*(const OtherScalar& scalar, const Derived& matrix) { return static_cast(matrix).operator*(scalar); } }; template struct cast_return_type { typedef typename XprType::Scalar CurrentScalarType; typedef typename remove_all::type _CastType; typedef typename _CastType::Scalar NewScalarType; typedef typename conditional::value, const XprType&,CastType>::type type; }; template struct promote_storage_type; template struct promote_storage_type { typedef A ret; }; /** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type. * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType. */ template struct plain_row_type { typedef Matrix MatrixRowType; typedef Array ArrayRowType; typedef typename conditional< is_same< typename traits::XprKind, MatrixXpr >::value, MatrixRowType, ArrayRowType >::type type; }; template struct plain_col_type { typedef Matrix MatrixColType; typedef Array ArrayColType; typedef typename conditional< is_same< typename traits::XprKind, MatrixXpr >::value, MatrixColType, ArrayColType >::type type; }; template struct plain_diag_type { enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime), max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime) }; typedef Matrix MatrixDiagType; typedef Array ArrayDiagType; typedef typename conditional< is_same< typename traits::XprKind, MatrixXpr >::value, MatrixDiagType, ArrayDiagType >::type type; }; template struct is_lvalue { enum { value = !bool(is_const::value) && bool(traits::Flags & LvalueBit) }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_XPRHELPER_H