// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEASSIGN_H #define EIGEN_SPARSEASSIGN_H namespace Eigen { template template Derived& SparseMatrixBase::operator=(const EigenBase &other) { internal::call_assignment_no_alias(derived(), other.derived()); return derived(); } template template Derived& SparseMatrixBase::operator=(const ReturnByValue& other) { // TODO use the evaluator mechanism other.evalTo(derived()); return derived(); } template template inline Derived& SparseMatrixBase::operator=(const SparseMatrixBase& other) { // by default sparse evaluation do not alias, so we can safely bypass the generic call_assignment routine internal::Assignment > ::run(derived(), other.derived(), internal::assign_op()); return derived(); } template inline Derived& SparseMatrixBase::operator=(const Derived& other) { internal::call_assignment_no_alias(derived(), other.derived()); return derived(); } namespace internal { template<> struct storage_kind_to_evaluator_kind { typedef IteratorBased Kind; }; template<> struct storage_kind_to_shape { typedef SparseShape Shape; }; struct Sparse2Sparse {}; struct Sparse2Dense {}; template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; template<> struct AssignmentKind { typedef Sparse2Sparse Kind; }; template<> struct AssignmentKind { typedef Sparse2Dense Kind; }; template<> struct AssignmentKind { typedef Sparse2Dense Kind; }; template void assign_sparse_to_sparse(DstXprType &dst, const SrcXprType &src) { typedef typename DstXprType::Scalar Scalar; typedef internal::evaluator DstEvaluatorType; typedef internal::evaluator SrcEvaluatorType; SrcEvaluatorType srcEvaluator(src); const bool transpose = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit); const Index outerEvaluationSize = (SrcEvaluatorType::Flags&RowMajorBit) ? src.rows() : src.cols(); if ((!transpose) && src.isRValue()) { // eval without temporary dst.resize(src.rows(), src.cols()); dst.setZero(); dst.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); for (Index j=0; j::SupportedAccessPatterns & OuterRandomAccessPattern)==OuterRandomAccessPattern) || (!((DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit)))) && "the transpose operation is supposed to be handled in SparseMatrix::operator="); enum { Flip = (DstEvaluatorType::Flags & RowMajorBit) != (SrcEvaluatorType::Flags & RowMajorBit) }; DstXprType temp(src.rows(), src.cols()); temp.reserve((std::min)(src.rows()*src.cols(), (std::max)(src.rows(),src.cols())*2)); for (Index j=0; j struct Assignment { static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &/*func*/) { assign_sparse_to_sparse(dst.derived(), src.derived()); } }; // Generic Sparse to Dense assignment template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment { static void run(DstXprType &dst, const SrcXprType &src, const Functor &func) { if(internal::is_same >::value) dst.setZero(); internal::evaluator srcEval(src); resize_if_allowed(dst, src, func); internal::evaluator dstEval(dst); const Index outerEvaluationSize = (internal::evaluator::Flags&RowMajorBit) ? src.rows() : src.cols(); for (Index j=0; j::InnerIterator i(srcEval,j); i; ++i) func.assignCoeff(dstEval.coeffRef(i.row(),i.col()), i.value()); } }; // Specialization for "dst = dec.solve(rhs)" // NOTE we need to specialize it for Sparse2Sparse to avoid ambiguous specialization error template struct Assignment, internal::assign_op, Sparse2Sparse> { typedef Solve SrcXprType; static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op &) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); src.dec()._solve_impl(src.rhs(), dst); } }; struct Diagonal2Sparse {}; template<> struct AssignmentKind { typedef Diagonal2Sparse Kind; }; template< typename DstXprType, typename SrcXprType, typename Functor> struct Assignment { typedef typename DstXprType::StorageIndex StorageIndex; typedef typename DstXprType::Scalar Scalar; typedef Array ArrayXI; typedef Array ArrayXS; template static void run(SparseMatrix &dst, const SrcXprType &src, const internal::assign_op &/*func*/) { Index dstRows = src.rows(); Index dstCols = src.cols(); if((dst.rows()!=dstRows) || (dst.cols()!=dstCols)) dst.resize(dstRows, dstCols); Index size = src.diagonal().size(); dst.makeCompressed(); dst.resizeNonZeros(size); Map(dst.innerIndexPtr(), size).setLinSpaced(0,StorageIndex(size)-1); Map(dst.outerIndexPtr(), size+1).setLinSpaced(0,StorageIndex(size)); Map(dst.valuePtr(), size) = src.diagonal(); } template static void run(SparseMatrixBase &dst, const SrcXprType &src, const internal::assign_op &/*func*/) { dst.diagonal() = src.diagonal(); } static void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op &/*func*/) { dst.diagonal() += src.diagonal(); } static void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op &/*func*/) { dst.diagonal() -= src.diagonal(); } }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSEASSIGN_H