// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_BLOCK_H #define EIGEN_SPARSE_BLOCK_H namespace Eigen { // Subset of columns or rows template class BlockImpl : public SparseMatrixBase > { typedef typename internal::remove_all::type _MatrixTypeNested; typedef Block BlockType; public: enum { IsRowMajor = internal::traits::IsRowMajor }; protected: enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; typedef SparseMatrixBase Base; using Base::convert_index; public: EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) inline BlockImpl(XprType& xpr, Index i) : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) {} inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) {} EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } Index nonZeros() const { typedef internal::evaluator EvaluatorType; EvaluatorType matEval(m_matrix); Index nnz = 0; Index end = m_outerStart + m_outerSize.value(); for(Index j=m_outerStart; j::non_const_type m_matrix; Index m_outerStart; const internal::variable_if_dynamic m_outerSize; protected: // Disable assignment with clear error message. // Note that simply removing operator= yields compilation errors with ICC+MSVC template BlockImpl& operator=(const T&) { EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY); return *this; } }; /*************************************************************************** * specialization for SparseMatrix ***************************************************************************/ namespace internal { template class sparse_matrix_block_impl : public SparseCompressedBase > { typedef typename internal::remove_all::type _MatrixTypeNested; typedef Block BlockType; typedef SparseCompressedBase > Base; using Base::convert_index; public: enum { IsRowMajor = internal::traits::IsRowMajor }; EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) protected: typedef typename Base::IndexVector IndexVector; enum { OuterSize = IsRowMajor ? BlockRows : BlockCols }; public: inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index i) : m_matrix(xpr), m_outerStart(convert_index(i)), m_outerSize(OuterSize) {} inline sparse_matrix_block_impl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : m_matrix(xpr), m_outerStart(convert_index(IsRowMajor ? startRow : startCol)), m_outerSize(convert_index(IsRowMajor ? blockRows : blockCols)) {} template inline BlockType& operator=(const SparseMatrixBase& other) { typedef typename internal::remove_all::type _NestedMatrixType; _NestedMatrixType& matrix = m_matrix; // This assignment is slow if this vector set is not empty // and/or it is not at the end of the nonzeros of the underlying matrix. // 1 - eval to a temporary to avoid transposition and/or aliasing issues Ref > tmp(other.derived()); eigen_internal_assert(tmp.outerSize()==m_outerSize.value()); // 2 - let's check whether there is enough allocated memory Index nnz = tmp.nonZeros(); Index start = m_outerStart==0 ? 0 : m_matrix.outerIndexPtr()[m_outerStart]; // starting position of the current block Index end = m_matrix.outerIndexPtr()[m_outerStart+m_outerSize.value()]; // ending position of the current block Index block_size = end - start; // available room in the current block Index tail_size = m_matrix.outerIndexPtr()[m_matrix.outerSize()] - end; Index free_size = m_matrix.isCompressed() ? Index(matrix.data().allocatedSize()) + block_size : block_size; Index tmp_start = tmp.outerIndexPtr()[0]; bool update_trailing_pointers = false; if(nnz>free_size) { // realloc manually to reduce copies typename SparseMatrixType::Storage newdata(m_matrix.data().allocatedSize() - block_size + nnz); internal::smart_copy(m_matrix.valuePtr(), m_matrix.valuePtr() + start, newdata.valuePtr()); internal::smart_copy(m_matrix.innerIndexPtr(), m_matrix.innerIndexPtr() + start, newdata.indexPtr()); internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, newdata.valuePtr() + start); internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, newdata.indexPtr() + start); internal::smart_copy(matrix.valuePtr()+end, matrix.valuePtr()+end + tail_size, newdata.valuePtr()+start+nnz); internal::smart_copy(matrix.innerIndexPtr()+end, matrix.innerIndexPtr()+end + tail_size, newdata.indexPtr()+start+nnz); newdata.resize(m_matrix.outerIndexPtr()[m_matrix.outerSize()] - block_size + nnz); matrix.data().swap(newdata); update_trailing_pointers = true; } else { if(m_matrix.isCompressed()) { // no need to realloc, simply copy the tail at its respective position and insert tmp matrix.data().resize(start + nnz + tail_size); internal::smart_memmove(matrix.valuePtr()+end, matrix.valuePtr() + end+tail_size, matrix.valuePtr() + start+nnz); internal::smart_memmove(matrix.innerIndexPtr()+end, matrix.innerIndexPtr() + end+tail_size, matrix.innerIndexPtr() + start+nnz); update_trailing_pointers = true; } internal::smart_copy(tmp.valuePtr() + tmp_start, tmp.valuePtr() + tmp_start + nnz, matrix.valuePtr() + start); internal::smart_copy(tmp.innerIndexPtr() + tmp_start, tmp.innerIndexPtr() + tmp_start + nnz, matrix.innerIndexPtr() + start); } // update outer index pointers and innerNonZeros if(IsVectorAtCompileTime) { if(!m_matrix.isCompressed()) matrix.innerNonZeroPtr()[m_outerStart] = StorageIndex(nnz); matrix.outerIndexPtr()[m_outerStart] = StorageIndex(start); } else { StorageIndex p = StorageIndex(start); for(Index k=0; k(tmp.innerVector(k).nonZeros()); if(!m_matrix.isCompressed()) matrix.innerNonZeroPtr()[m_outerStart+k] = nnz_k; matrix.outerIndexPtr()[m_outerStart+k] = p; p += nnz_k; } } if(update_trailing_pointers) { StorageIndex offset = internal::convert_index(nnz - block_size); for(Index k = m_outerStart + m_outerSize.value(); k<=matrix.outerSize(); ++k) { matrix.outerIndexPtr()[k] += offset; } } return derived(); } inline BlockType& operator=(const BlockType& other) { return operator=(other); } inline const Scalar* valuePtr() const { return m_matrix.valuePtr(); } inline Scalar* valuePtr() { return m_matrix.valuePtr(); } inline const StorageIndex* innerIndexPtr() const { return m_matrix.innerIndexPtr(); } inline StorageIndex* innerIndexPtr() { return m_matrix.innerIndexPtr(); } inline const StorageIndex* outerIndexPtr() const { return m_matrix.outerIndexPtr() + m_outerStart; } inline StorageIndex* outerIndexPtr() { return m_matrix.outerIndexPtr() + m_outerStart; } inline const StorageIndex* innerNonZeroPtr() const { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); } inline StorageIndex* innerNonZeroPtr() { return isCompressed() ? 0 : (m_matrix.innerNonZeroPtr()+m_outerStart); } bool isCompressed() const { return m_matrix.innerNonZeroPtr()==0; } inline Scalar& coeffRef(Index row, Index col) { return m_matrix.coeffRef(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart)); } inline const Scalar coeff(Index row, Index col) const { return m_matrix.coeff(row + (IsRowMajor ? m_outerStart : 0), col + (IsRowMajor ? 0 : m_outerStart)); } inline const Scalar coeff(Index index) const { return m_matrix.coeff(IsRowMajor ? m_outerStart : index, IsRowMajor ? index : m_outerStart); } const Scalar& lastCoeff() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(sparse_matrix_block_impl); eigen_assert(Base::nonZeros()>0); if(m_matrix.isCompressed()) return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart+1]-1]; else return m_matrix.valuePtr()[m_matrix.outerIndexPtr()[m_outerStart]+m_matrix.innerNonZeroPtr()[m_outerStart]-1]; } EIGEN_STRONG_INLINE Index rows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } EIGEN_STRONG_INLINE Index cols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } inline const SparseMatrixType& nestedExpression() const { return m_matrix; } inline SparseMatrixType& nestedExpression() { return m_matrix; } Index startRow() const { return IsRowMajor ? m_outerStart : 0; } Index startCol() const { return IsRowMajor ? 0 : m_outerStart; } Index blockRows() const { return IsRowMajor ? m_outerSize.value() : m_matrix.rows(); } Index blockCols() const { return IsRowMajor ? m_matrix.cols() : m_outerSize.value(); } protected: typename internal::ref_selector::non_const_type m_matrix; Index m_outerStart; const internal::variable_if_dynamic m_outerSize; }; } // namespace internal template class BlockImpl,BlockRows,BlockCols,true,Sparse> : public internal::sparse_matrix_block_impl,BlockRows,BlockCols> { public: typedef _StorageIndex StorageIndex; typedef SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType; typedef internal::sparse_matrix_block_impl Base; inline BlockImpl(SparseMatrixType& xpr, Index i) : Base(xpr, i) {} inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : Base(xpr, startRow, startCol, blockRows, blockCols) {} using Base::operator=; }; template class BlockImpl,BlockRows,BlockCols,true,Sparse> : public internal::sparse_matrix_block_impl,BlockRows,BlockCols> { public: typedef _StorageIndex StorageIndex; typedef const SparseMatrix<_Scalar, _Options, _StorageIndex> SparseMatrixType; typedef internal::sparse_matrix_block_impl Base; inline BlockImpl(SparseMatrixType& xpr, Index i) : Base(xpr, i) {} inline BlockImpl(SparseMatrixType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : Base(xpr, startRow, startCol, blockRows, blockCols) {} using Base::operator=; private: template BlockImpl(const SparseMatrixBase& xpr, Index i); template BlockImpl(const SparseMatrixBase& xpr); }; //---------- /** Generic implementation of sparse Block expression. * Real-only. */ template class BlockImpl : public SparseMatrixBase >, internal::no_assignment_operator { typedef Block BlockType; typedef SparseMatrixBase Base; using Base::convert_index; public: enum { IsRowMajor = internal::traits::IsRowMajor }; EIGEN_SPARSE_PUBLIC_INTERFACE(BlockType) typedef typename internal::remove_all::type _MatrixTypeNested; /** Column or Row constructor */ inline BlockImpl(XprType& xpr, Index i) : m_matrix(xpr), m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? convert_index(i) : 0), m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? convert_index(i) : 0), m_blockRows(BlockRows==1 ? 1 : xpr.rows()), m_blockCols(BlockCols==1 ? 1 : xpr.cols()) {} /** Dynamic-size constructor */ inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : m_matrix(xpr), m_startRow(convert_index(startRow)), m_startCol(convert_index(startCol)), m_blockRows(convert_index(blockRows)), m_blockCols(convert_index(blockCols)) {} inline Index rows() const { return m_blockRows.value(); } inline Index cols() const { return m_blockCols.value(); } inline Scalar& coeffRef(Index row, Index col) { return m_matrix.coeffRef(row + m_startRow.value(), col + m_startCol.value()); } inline const Scalar coeff(Index row, Index col) const { return m_matrix.coeff(row + m_startRow.value(), col + m_startCol.value()); } inline Scalar& coeffRef(Index index) { return m_matrix.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } inline const Scalar coeff(Index index) const { return m_matrix.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } inline const XprType& nestedExpression() const { return m_matrix; } inline XprType& nestedExpression() { return m_matrix; } Index startRow() const { return m_startRow.value(); } Index startCol() const { return m_startCol.value(); } Index blockRows() const { return m_blockRows.value(); } Index blockCols() const { return m_blockCols.value(); } protected: // friend class internal::GenericSparseBlockInnerIteratorImpl; friend struct internal::unary_evaluator, internal::IteratorBased, Scalar >; Index nonZeros() const { return Dynamic; } typename internal::ref_selector::non_const_type m_matrix; const internal::variable_if_dynamic m_startRow; const internal::variable_if_dynamic m_startCol; const internal::variable_if_dynamic m_blockRows; const internal::variable_if_dynamic m_blockCols; protected: // Disable assignment with clear error message. // Note that simply removing operator= yields compilation errors with ICC+MSVC template BlockImpl& operator=(const T&) { EIGEN_STATIC_ASSERT(sizeof(T)==0, THIS_SPARSE_BLOCK_SUBEXPRESSION_IS_READ_ONLY); return *this; } }; namespace internal { template struct unary_evaluator, IteratorBased > : public evaluator_base > { class InnerVectorInnerIterator; class OuterVectorInnerIterator; public: typedef Block XprType; typedef typename XprType::StorageIndex StorageIndex; typedef typename XprType::Scalar Scalar; enum { IsRowMajor = XprType::IsRowMajor, OuterVector = (BlockCols==1 && ArgType::IsRowMajor) | // FIXME | instead of || to please GCC 4.4.0 stupid warning "suggest parentheses around &&". // revert to || as soon as not needed anymore. (BlockRows==1 && !ArgType::IsRowMajor), CoeffReadCost = evaluator::CoeffReadCost, Flags = XprType::Flags }; typedef typename internal::conditional::type InnerIterator; explicit unary_evaluator(const XprType& op) : m_argImpl(op.nestedExpression()), m_block(op) {} inline Index nonZerosEstimate() const { Index nnz = m_block.nonZeros(); if(nnz<0) return m_argImpl.nonZerosEstimate() * m_block.size() / m_block.nestedExpression().size(); return nnz; } protected: typedef typename evaluator::InnerIterator EvalIterator; evaluator m_argImpl; const XprType &m_block; }; template class unary_evaluator, IteratorBased>::InnerVectorInnerIterator : public EvalIterator { enum { IsRowMajor = unary_evaluator::IsRowMajor }; const XprType& m_block; Index m_end; public: EIGEN_STRONG_INLINE InnerVectorInnerIterator(const unary_evaluator& aEval, Index outer) : EvalIterator(aEval.m_argImpl, outer + (IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol())), m_block(aEval.m_block), m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()) { while( (EvalIterator::operator bool()) && (EvalIterator::index() < (IsRowMajor ? m_block.startCol() : m_block.startRow())) ) EvalIterator::operator++(); } inline StorageIndex index() const { return EvalIterator::index() - convert_index(IsRowMajor ? m_block.startCol() : m_block.startRow()); } inline Index outer() const { return EvalIterator::outer() - (IsRowMajor ? m_block.startRow() : m_block.startCol()); } inline Index row() const { return EvalIterator::row() - m_block.startRow(); } inline Index col() const { return EvalIterator::col() - m_block.startCol(); } inline operator bool() const { return EvalIterator::operator bool() && EvalIterator::index() < m_end; } }; template class unary_evaluator, IteratorBased>::OuterVectorInnerIterator { enum { IsRowMajor = unary_evaluator::IsRowMajor }; const unary_evaluator& m_eval; Index m_outerPos; const Index m_innerIndex; Index m_end; EvalIterator m_it; public: EIGEN_STRONG_INLINE OuterVectorInnerIterator(const unary_evaluator& aEval, Index outer) : m_eval(aEval), m_outerPos( (IsRowMajor ? aEval.m_block.startCol() : aEval.m_block.startRow()) ), m_innerIndex(IsRowMajor ? aEval.m_block.startRow() : aEval.m_block.startCol()), m_end(IsRowMajor ? aEval.m_block.startCol()+aEval.m_block.blockCols() : aEval.m_block.startRow()+aEval.m_block.blockRows()), m_it(m_eval.m_argImpl, m_outerPos) { EIGEN_UNUSED_VARIABLE(outer); eigen_assert(outer==0); while(m_it && m_it.index() < m_innerIndex) ++m_it; if((!m_it) || (m_it.index()!=m_innerIndex)) ++(*this); } inline StorageIndex index() const { return convert_index(m_outerPos - (IsRowMajor ? m_eval.m_block.startCol() : m_eval.m_block.startRow())); } inline Index outer() const { return 0; } inline Index row() const { return IsRowMajor ? 0 : index(); } inline Index col() const { return IsRowMajor ? index() : 0; } inline Scalar value() const { return m_it.value(); } inline Scalar& valueRef() { return m_it.valueRef(); } inline OuterVectorInnerIterator& operator++() { // search next non-zero entry while(++m_outerPos struct unary_evaluator,BlockRows,BlockCols,true>, IteratorBased> : evaluator,BlockRows,BlockCols,true> > > { typedef Block,BlockRows,BlockCols,true> XprType; typedef evaluator > Base; explicit unary_evaluator(const XprType &xpr) : Base(xpr) {} }; template struct unary_evaluator,BlockRows,BlockCols,true>, IteratorBased> : evaluator,BlockRows,BlockCols,true> > > { typedef Block,BlockRows,BlockCols,true> XprType; typedef evaluator > Base; explicit unary_evaluator(const XprType &xpr) : Base(xpr) {} }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_SPARSE_BLOCK_H