// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // Copyright (C) 2006-2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BLOCK_H #define EIGEN_BLOCK_H namespace Eigen { namespace internal { template struct traits > : traits { typedef typename traits::Scalar Scalar; typedef typename traits::StorageKind StorageKind; typedef typename traits::XprKind XprKind; typedef typename ref_selector::type XprTypeNested; typedef typename remove_reference::type _XprTypeNested; enum{ MatrixRows = traits::RowsAtCompileTime, MatrixCols = traits::ColsAtCompileTime, RowsAtCompileTime = MatrixRows == 0 ? 0 : BlockRows, ColsAtCompileTime = MatrixCols == 0 ? 0 : BlockCols, MaxRowsAtCompileTime = BlockRows==0 ? 0 : RowsAtCompileTime != Dynamic ? int(RowsAtCompileTime) : int(traits::MaxRowsAtCompileTime), MaxColsAtCompileTime = BlockCols==0 ? 0 : ColsAtCompileTime != Dynamic ? int(ColsAtCompileTime) : int(traits::MaxColsAtCompileTime), XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0, IsRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1 : (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0 : XprTypeIsRowMajor, HasSameStorageOrderAsXprType = (IsRowMajor == XprTypeIsRowMajor), InnerSize = IsRowMajor ? int(ColsAtCompileTime) : int(RowsAtCompileTime), InnerStrideAtCompileTime = HasSameStorageOrderAsXprType ? int(inner_stride_at_compile_time::ret) : int(outer_stride_at_compile_time::ret), OuterStrideAtCompileTime = HasSameStorageOrderAsXprType ? int(outer_stride_at_compile_time::ret) : int(inner_stride_at_compile_time::ret), // FIXME, this traits is rather specialized for dense object and it needs to be cleaned further FlagsLvalueBit = is_lvalue::value ? LvalueBit : 0, FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0, Flags = (traits::Flags & (DirectAccessBit | (InnerPanel?CompressedAccessBit:0))) | FlagsLvalueBit | FlagsRowMajorBit, // FIXME DirectAccessBit should not be handled by expressions // // Alignment is needed by MapBase's assertions // We can sefely set it to false here. Internal alignment errors will be detected by an eigen_internal_assert in the respective evaluator Alignment = 0 }; }; template::ret> class BlockImpl_dense; } // end namespace internal template class BlockImpl; /** \class Block * \ingroup Core_Module * * \brief Expression of a fixed-size or dynamic-size block * * \tparam XprType the type of the expression in which we are taking a block * \tparam BlockRows the number of rows of the block we are taking at compile time (optional) * \tparam BlockCols the number of columns of the block we are taking at compile time (optional) * \tparam InnerPanel is true, if the block maps to a set of rows of a row major matrix or * to set of columns of a column major matrix (optional). The parameter allows to determine * at compile time whether aligned access is possible on the block expression. * * This class represents an expression of either a fixed-size or dynamic-size block. It is the return * type of DenseBase::block(Index,Index,Index,Index) and DenseBase::block(Index,Index) and * most of the time this is the only way it is used. * * However, if you want to directly maniputate block expressions, * for instance if you want to write a function returning such an expression, you * will need to use this class. * * Here is an example illustrating the dynamic case: * \include class_Block.cpp * Output: \verbinclude class_Block.out * * \note Even though this expression has dynamic size, in the case where \a XprType * has fixed size, this expression inherits a fixed maximal size which means that evaluating * it does not cause a dynamic memory allocation. * * Here is an example illustrating the fixed-size case: * \include class_FixedBlock.cpp * Output: \verbinclude class_FixedBlock.out * * \sa DenseBase::block(Index,Index,Index,Index), DenseBase::block(Index,Index), class VectorBlock */ template class Block : public BlockImpl::StorageKind> { typedef BlockImpl::StorageKind> Impl; public: //typedef typename Impl::Base Base; typedef Impl Base; EIGEN_GENERIC_PUBLIC_INTERFACE(Block) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Block) typedef typename internal::remove_all::type NestedExpression; /** Column or Row constructor */ EIGEN_DEVICE_FUNC inline Block(XprType& xpr, Index i) : Impl(xpr,i) { eigen_assert( (i>=0) && ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && i= 0 && BlockRows >= 0 && startRow + BlockRows <= xpr.rows() && startCol >= 0 && BlockCols >= 0 && startCol + BlockCols <= xpr.cols()); } /** Dynamic-size constructor */ EIGEN_DEVICE_FUNC inline Block(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : Impl(xpr, startRow, startCol, blockRows, blockCols) { eigen_assert((RowsAtCompileTime==Dynamic || RowsAtCompileTime==blockRows) && (ColsAtCompileTime==Dynamic || ColsAtCompileTime==blockCols)); eigen_assert(startRow >= 0 && blockRows >= 0 && startRow <= xpr.rows() - blockRows && startCol >= 0 && blockCols >= 0 && startCol <= xpr.cols() - blockCols); } }; // The generic default implementation for dense block simplu forward to the internal::BlockImpl_dense // that must be specialized for direct and non-direct access... template class BlockImpl : public internal::BlockImpl_dense { typedef internal::BlockImpl_dense Impl; typedef typename XprType::StorageIndex StorageIndex; public: typedef Impl Base; EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl) EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index i) : Impl(xpr,i) {} EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index startRow, Index startCol) : Impl(xpr, startRow, startCol) {} EIGEN_DEVICE_FUNC inline BlockImpl(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : Impl(xpr, startRow, startCol, blockRows, blockCols) {} }; namespace internal { /** \internal Internal implementation of dense Blocks in the general case. */ template class BlockImpl_dense : public internal::dense_xpr_base >::type { typedef Block BlockType; typedef typename internal::ref_selector::non_const_type XprTypeNested; public: typedef typename internal::dense_xpr_base::type Base; EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) // class InnerIterator; // FIXME apparently never used /** Column or Row constructor */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index i) : m_xpr(xpr), // It is a row if and only if BlockRows==1 and BlockCols==XprType::ColsAtCompileTime, // and it is a column if and only if BlockRows==XprType::RowsAtCompileTime and BlockCols==1, // all other cases are invalid. // The case a 1x1 matrix seems ambiguous, but the result is the same anyway. m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0), m_blockRows(BlockRows==1 ? 1 : xpr.rows()), m_blockCols(BlockCols==1 ? 1 : xpr.cols()) {} /** Fixed-size constructor */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol) : m_xpr(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(BlockRows), m_blockCols(BlockCols) {} /** Dynamic-size constructor */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : m_xpr(xpr), m_startRow(startRow), m_startCol(startCol), m_blockRows(blockRows), m_blockCols(blockCols) {} EIGEN_DEVICE_FUNC inline Index rows() const { return m_blockRows.value(); } EIGEN_DEVICE_FUNC inline Index cols() const { return m_blockCols.value(); } EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index rowId, Index colId) { EIGEN_STATIC_ASSERT_LVALUE(XprType) return m_xpr.coeffRef(rowId + m_startRow.value(), colId + m_startCol.value()); } EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index rowId, Index colId) const { return m_xpr.derived().coeffRef(rowId + m_startRow.value(), colId + m_startCol.value()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index rowId, Index colId) const { return m_xpr.coeff(rowId + m_startRow.value(), colId + m_startCol.value()); } EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index) { EIGEN_STATIC_ASSERT_LVALUE(XprType) return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } EIGEN_DEVICE_FUNC inline const Scalar& coeffRef(Index index) const { return m_xpr.coeffRef(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const { return m_xpr.coeff(m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } template inline PacketScalar packet(Index rowId, Index colId) const { return m_xpr.template packet(rowId + m_startRow.value(), colId + m_startCol.value()); } template inline void writePacket(Index rowId, Index colId, const PacketScalar& val) { m_xpr.template writePacket(rowId + m_startRow.value(), colId + m_startCol.value(), val); } template inline PacketScalar packet(Index index) const { return m_xpr.template packet (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0)); } template inline void writePacket(Index index, const PacketScalar& val) { m_xpr.template writePacket (m_startRow.value() + (RowsAtCompileTime == 1 ? 0 : index), m_startCol.value() + (RowsAtCompileTime == 1 ? index : 0), val); } #ifdef EIGEN_PARSED_BY_DOXYGEN /** \sa MapBase::data() */ EIGEN_DEVICE_FUNC inline const Scalar* data() const; EIGEN_DEVICE_FUNC inline Index innerStride() const; EIGEN_DEVICE_FUNC inline Index outerStride() const; #endif EIGEN_DEVICE_FUNC const typename internal::remove_all::type& nestedExpression() const { return m_xpr; } EIGEN_DEVICE_FUNC XprType& nestedExpression() { return m_xpr; } EIGEN_DEVICE_FUNC StorageIndex startRow() const { return m_startRow.value(); } EIGEN_DEVICE_FUNC StorageIndex startCol() const { return m_startCol.value(); } protected: XprTypeNested m_xpr; const internal::variable_if_dynamic m_startRow; const internal::variable_if_dynamic m_startCol; const internal::variable_if_dynamic m_blockRows; const internal::variable_if_dynamic m_blockCols; }; /** \internal Internal implementation of dense Blocks in the direct access case.*/ template class BlockImpl_dense : public MapBase > { typedef Block BlockType; typedef typename internal::ref_selector::non_const_type XprTypeNested; enum { XprTypeIsRowMajor = (int(traits::Flags)&RowMajorBit) != 0 }; public: typedef MapBase Base; EIGEN_DENSE_PUBLIC_INTERFACE(BlockType) EIGEN_INHERIT_ASSIGNMENT_OPERATORS(BlockImpl_dense) /** Column or Row constructor */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index i) : Base(xpr.data() + i * ( ((BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) && (!XprTypeIsRowMajor)) || ((BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) && ( XprTypeIsRowMajor)) ? xpr.innerStride() : xpr.outerStride()), BlockRows==1 ? 1 : xpr.rows(), BlockCols==1 ? 1 : xpr.cols()), m_xpr(xpr), m_startRow( (BlockRows==1) && (BlockCols==XprType::ColsAtCompileTime) ? i : 0), m_startCol( (BlockRows==XprType::RowsAtCompileTime) && (BlockCols==1) ? i : 0) { init(); } /** Fixed-size constructor */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol) : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol)), m_xpr(xpr), m_startRow(startRow), m_startCol(startCol) { init(); } /** Dynamic-size constructor */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, Index startRow, Index startCol, Index blockRows, Index blockCols) : Base(xpr.data()+xpr.innerStride()*(XprTypeIsRowMajor?startCol:startRow) + xpr.outerStride()*(XprTypeIsRowMajor?startRow:startCol), blockRows, blockCols), m_xpr(xpr), m_startRow(startRow), m_startCol(startCol) { init(); } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& nestedExpression() const { return m_xpr; } EIGEN_DEVICE_FUNC XprType& nestedExpression() { return m_xpr; } /** \sa MapBase::innerStride() */ EIGEN_DEVICE_FUNC inline Index innerStride() const { return internal::traits::HasSameStorageOrderAsXprType ? m_xpr.innerStride() : m_xpr.outerStride(); } /** \sa MapBase::outerStride() */ EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_outerStride; } EIGEN_DEVICE_FUNC StorageIndex startRow() const { return m_startRow.value(); } EIGEN_DEVICE_FUNC StorageIndex startCol() const { return m_startCol.value(); } #ifndef __SUNPRO_CC // FIXME sunstudio is not friendly with the above friend... // META-FIXME there is no 'friend' keyword around here. Is this obsolete? protected: #endif #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal used by allowAligned() */ EIGEN_DEVICE_FUNC inline BlockImpl_dense(XprType& xpr, const Scalar* data, Index blockRows, Index blockCols) : Base(data, blockRows, blockCols), m_xpr(xpr) { init(); } #endif protected: EIGEN_DEVICE_FUNC void init() { m_outerStride = internal::traits::HasSameStorageOrderAsXprType ? m_xpr.outerStride() : m_xpr.innerStride(); } XprTypeNested m_xpr; const internal::variable_if_dynamic m_startRow; const internal::variable_if_dynamic m_startCol; Index m_outerStride; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_BLOCK_H