// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H #define EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H namespace Eigen { /** \class TensorAssign * \ingroup CXX11_Tensor_Module * * \brief The tensor assignment class. * * This class is represents the assignment of the values resulting from the evaluation of * the rhs expression to the memory locations denoted by the lhs expression. */ namespace internal { template struct traits > { typedef typename LhsXprType::Scalar Scalar; typedef typename traits::StorageKind StorageKind; typedef typename promote_index_type::Index, typename traits::Index>::type Index; typedef typename LhsXprType::Nested LhsNested; typedef typename RhsXprType::Nested RhsNested; typedef typename remove_reference::type _LhsNested; typedef typename remove_reference::type _RhsNested; static const std::size_t NumDimensions = internal::traits::NumDimensions; static const int Layout = internal::traits::Layout; enum { Flags = 0 }; }; template struct eval, Eigen::Dense> { typedef const TensorAssignOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorAssignOp type; }; } // end namespace internal template class TensorAssignOp : public TensorBase > { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename LhsXprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorAssignOp(LhsXprType& lhs, const RhsXprType& rhs) : m_lhs_xpr(lhs), m_rhs_xpr(rhs) {} /** \returns the nested expressions */ EIGEN_DEVICE_FUNC typename internal::remove_all::type& lhsExpression() const { return *((typename internal::remove_all::type*)&m_lhs_xpr); } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& rhsExpression() const { return m_rhs_xpr; } protected: typename internal::remove_all::type& m_lhs_xpr; const typename internal::remove_all::type& m_rhs_xpr; }; template struct TensorEvaluator, Device> { typedef TensorAssignOp XprType; typedef typename XprType::Index Index; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; typedef typename TensorEvaluator::Dimensions Dimensions; static const int PacketSize = internal::unpacket_traits::size; enum { IsAligned = TensorEvaluator::IsAligned & TensorEvaluator::IsAligned, PacketAccess = TensorEvaluator::PacketAccess & TensorEvaluator::PacketAccess, Layout = TensorEvaluator::Layout, RawAccess = TensorEvaluator::RawAccess }; EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const Device& device) : m_leftImpl(op.lhsExpression(), device), m_rightImpl(op.rhsExpression(), device) { EIGEN_STATIC_ASSERT((static_cast(TensorEvaluator::Layout) == static_cast(TensorEvaluator::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE); } EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { // The dimensions of the lhs and the rhs tensors should be equal to prevent // overflows and ensure the result is fully initialized. // TODO: use left impl instead if right impl dimensions are known at compile time. return m_rightImpl.dimensions(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar*) { eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions())); m_leftImpl.evalSubExprsIfNeeded(NULL); // If the lhs provides raw access to its storage area (i.e. if m_leftImpl.data() returns a non // null value), attempt to evaluate the rhs expression in place. Returns true iff in place // evaluation isn't supported and the caller still needs to manually assign the values generated // by the rhs to the lhs. return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data()); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_leftImpl.cleanup(); m_rightImpl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalScalar(Index i) { m_leftImpl.coeffRef(i) = m_rightImpl.coeff(i); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalPacket(Index i) { const int LhsStoreMode = TensorEvaluator::IsAligned ? Aligned : Unaligned; const int RhsLoadMode = TensorEvaluator::IsAligned ? Aligned : Unaligned; m_leftImpl.template writePacket(i, m_rightImpl.template packet(i)); } EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const { return m_leftImpl.coeff(index); } template EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const { return m_leftImpl.template packet(index); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { // We assume that evalPacket or evalScalar is called to perform the // assignment and account for the cost of the write here, but reduce left // cost by one load because we are using m_leftImpl.coeffRef. TensorOpCost left = m_leftImpl.costPerCoeff(vectorized); return m_rightImpl.costPerCoeff(vectorized) + TensorOpCost( numext::maxi(0.0, left.bytes_loaded() - sizeof(CoeffReturnType)), left.bytes_stored(), left.compute_cycles()) + TensorOpCost(0, sizeof(CoeffReturnType), 0, vectorized, PacketSize); } /// required by sycl in order to extract the accessor const TensorEvaluator& left_impl() const { return m_leftImpl; } /// required by sycl in order to extract the accessor const TensorEvaluator& right_impl() const { return m_rightImpl; } EIGEN_DEVICE_FUNC CoeffReturnType* data() const { return m_leftImpl.data(); } private: TensorEvaluator m_leftImpl; TensorEvaluator m_rightImpl; }; } #endif // EIGEN_CXX11_TENSOR_TENSOR_ASSIGN_H