-- | This module exports miscellaneous error-handling functions. module Control.Error.Util ( -- * Conversion -- $conversion hush, hushT, note, noteT, hoistMaybe, hoistEither, (??), (!?), failWith, failWithM, -- * Bool bool, -- * Maybe (?:), -- * MaybeT maybeT, just, nothing, isJustT, isNothingT, -- * Either isLeft, isRight, fmapR, AllE(..), AnyE(..), -- * ExceptT isLeftT, isRightT, fmapRT, exceptT, bimapExceptT, -- * Error Reporting err, errLn, -- * Exceptions tryIO, handleExceptT, syncIO ) where import Control.Applicative (Applicative, pure, (<$>)) import Control.Exception (Handler(..), IOException, SomeException, Exception) import Control.Monad (liftM) import Control.Monad.Catch (MonadCatch, try) import Control.Monad.IO.Class (MonadIO(liftIO)) import Control.Monad.Trans.Except (ExceptT(ExceptT), runExceptT, withExceptT) import Control.Monad.Trans.Maybe (MaybeT(MaybeT), runMaybeT) import Data.Dynamic (Dynamic) import Data.Monoid (Monoid(mempty, mappend)) import Data.Maybe (fromMaybe) import Data.Text (Text) import System.Exit (ExitCode) import System.IO (hPutStr, hPutStrLn, stderr) import UnexceptionalIO (UIO, Unexceptional) import qualified Control.Exception as Exception import qualified Data.Text.IO import qualified UnexceptionalIO as UIO -- | Fold an 'ExceptT' by providing one continuation for each constructor exceptT :: Monad m => (a -> m c) -> (b -> m c) -> ExceptT a m b -> m c exceptT f g (ExceptT m) = m >>= \z -> case z of Left a -> f a Right b -> g b {-# INLINEABLE exceptT #-} -- | Transform the left and right value bimapExceptT :: Functor m => (e -> f) -> (a -> b) -> ExceptT e m a -> ExceptT f m b bimapExceptT f g (ExceptT m) = ExceptT (fmap h m) where h (Left e) = Left (f e) h (Right a) = Right (g a) {-# INLINEABLE bimapExceptT #-} -- | Upgrade an 'Either' to an 'ExceptT' hoistEither :: Monad m => Either e a -> ExceptT e m a hoistEither = ExceptT . return {-# INLINEABLE hoistEither #-} {- $conversion Use these functions to convert between 'Maybe', 'Either', 'MaybeT', and 'ExceptT'. -} -- | Suppress the 'Left' value of an 'Either' hush :: Either a b -> Maybe b hush = either (const Nothing) Just -- | Suppress the 'Left' value of an 'ExceptT' hushT :: (Monad m) => ExceptT a m b -> MaybeT m b hushT = MaybeT . liftM hush . runExceptT -- | Tag the 'Nothing' value of a 'Maybe' note :: a -> Maybe b -> Either a b note a = maybe (Left a) Right -- | Tag the 'Nothing' value of a 'MaybeT' noteT :: (Monad m) => a -> MaybeT m b -> ExceptT a m b noteT a = ExceptT . liftM (note a) . runMaybeT -- | Lift a 'Maybe' to the 'MaybeT' monad hoistMaybe :: (Monad m) => Maybe b -> MaybeT m b hoistMaybe = MaybeT . return -- | Convert a 'Maybe' value into the 'ExceptT' monad (??) :: Applicative m => Maybe a -> e -> ExceptT e m a (??) a e = ExceptT (pure $ note e a) -- | Convert an applicative 'Maybe' value into the 'ExceptT' monad (!?) :: Applicative m => m (Maybe a) -> e -> ExceptT e m a (!?) a e = ExceptT (note e <$> a) -- | An infix form of 'fromMaybe' with arguments flipped. (?:) :: Maybe a -> a -> a maybeA ?: b = fromMaybe b maybeA {-# INLINABLE (?:) #-} infixr 0 ?: {-| Convert a 'Maybe' value into the 'ExceptT' monad Named version of ('??') with arguments flipped -} failWith :: Applicative m => e -> Maybe a -> ExceptT e m a failWith e a = a ?? e {- | Convert an applicative 'Maybe' value into the 'ExceptT' monad Named version of ('!?') with arguments flipped -} failWithM :: Applicative m => e -> m (Maybe a) -> ExceptT e m a failWithM e a = a !? e {- | Case analysis for the 'Bool' type. > bool a b c == if c then b else a -} bool :: a -> a -> Bool -> a bool a b = \c -> if c then b else a {-# INLINABLE bool #-} {-| Case analysis for 'MaybeT' Use the first argument if the 'MaybeT' computation fails, otherwise apply the function to the successful result. -} maybeT :: Monad m => m b -> (a -> m b) -> MaybeT m a -> m b maybeT mb kb (MaybeT ma) = ma >>= maybe mb kb -- | Analogous to 'Just' and equivalent to 'return' just :: (Monad m) => a -> MaybeT m a just a = MaybeT (return (Just a)) -- | Analogous to 'Nothing' and equivalent to 'mzero' nothing :: (Monad m) => MaybeT m a nothing = MaybeT (return Nothing) -- | Analogous to 'Data.Maybe.isJust', but for 'MaybeT' isJustT :: (Monad m) => MaybeT m a -> m Bool isJustT = maybeT (return False) (\_ -> return True) {-# INLINABLE isJustT #-} -- | Analogous to 'Data.Maybe.isNothing', but for 'MaybeT' isNothingT :: (Monad m) => MaybeT m a -> m Bool isNothingT = maybeT (return True) (\_ -> return False) {-# INLINABLE isNothingT #-} -- | Returns whether argument is a 'Left' isLeft :: Either a b -> Bool isLeft = either (const True) (const False) -- | Returns whether argument is a 'Right' isRight :: Either a b -> Bool isRight = either (const False) (const True) {- | 'fmap' specialized to 'Either', given a name symmetric to 'Data.EitherR.fmapL' -} fmapR :: (a -> b) -> Either l a -> Either l b fmapR = fmap {-| Run multiple 'Either' computations and succeed if all of them succeed 'mappend's all successes or failures -} newtype AllE e r = AllE { runAllE :: Either e r } instance (Monoid e, Monoid r) => Monoid (AllE e r) where mempty = AllE (Right mempty) mappend (AllE (Right x)) (AllE (Right y)) = AllE (Right (mappend x y)) mappend (AllE (Right _)) (AllE (Left y)) = AllE (Left y) mappend (AllE (Left x)) (AllE (Right _)) = AllE (Left x) mappend (AllE (Left x)) (AllE (Left y)) = AllE (Left (mappend x y)) {-| Run multiple 'Either' computations and succeed if any of them succeed 'mappend's all successes or failures -} newtype AnyE e r = AnyE { runAnyE :: Either e r } instance (Monoid e, Monoid r) => Monoid (AnyE e r) where mempty = AnyE (Right mempty) mappend (AnyE (Right x)) (AnyE (Right y)) = AnyE (Right (mappend x y)) mappend (AnyE (Right x)) (AnyE (Left _)) = AnyE (Right x) mappend (AnyE (Left _)) (AnyE (Right y)) = AnyE (Right y) mappend (AnyE (Left x)) (AnyE (Left y)) = AnyE (Left (mappend x y)) -- | Analogous to 'isLeft', but for 'ExceptT' isLeftT :: (Monad m) => ExceptT a m b -> m Bool isLeftT = exceptT (\_ -> return True) (\_ -> return False) {-# INLINABLE isLeftT #-} -- | Analogous to 'isRight', but for 'ExceptT' isRightT :: (Monad m) => ExceptT a m b -> m Bool isRightT = exceptT (\_ -> return False) (\_ -> return True) {-# INLINABLE isRightT #-} {- | 'fmap' specialized to 'ExceptT', given a name symmetric to 'Data.EitherR.fmapLT' -} fmapRT :: (Monad m) => (a -> b) -> ExceptT l m a -> ExceptT l m b fmapRT = liftM -- | Write a string to standard error err :: Text -> IO () err = Data.Text.IO.hPutStr stderr -- | Write a string with a newline to standard error errLn :: Text -> IO () errLn = Data.Text.IO.hPutStrLn stderr -- | Catch 'IOException's and convert them to the 'ExceptT' monad tryIO :: MonadIO m => IO a -> ExceptT IOException m a tryIO = ExceptT . liftIO . Exception.try -- | Run a monad action which may throw an exception in the `ExceptT` monad handleExceptT :: (Exception e, Functor m, MonadCatch m) => (e -> x) -> m a -> ExceptT x m a handleExceptT handler = bimapExceptT handler id . ExceptT . try {-| Catch all exceptions, except for asynchronous exceptions found in @base@ and convert them to the 'ExceptT' monad -} syncIO :: Unexceptional m => IO a -> ExceptT SomeException m a syncIO = ExceptT . UIO.liftUIO . UIO.fromIO