-- Copyright (c) 2008-2011 -- The President and Fellows of Harvard College. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions -- are met: -- 1. Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- 2. Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution. -- 3. Neither the name of the University nor the names of its contributors -- may be used to endorse or promote products derived from this software -- without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND CONTRIBUTORS ``AS IS'' AND -- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE -- ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OR CONTRIBUTORS BE LIABLE -- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS -- OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) -- HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT -- LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY -- OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF -- SUCH DAMAGE. -------------------------------------------------------------------------------- -- | -- Module : Control.Monad.Exception -- Copyright : (c) Harvard University 2008-2011 -- License : BSD-style -- Maintainer : mainland@eecs.harvard.edu -- -------------------------------------------------------------------------------- {-# LANGUAGE CPP #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UnboxedTuples #-} module Control.Monad.Exception ( E.Exception(..), E.SomeException, MonadException(..), onException, MonadAsyncException(..), bracket, bracket_, ExceptionT(..), mapExceptionT, liftException ) where import Prelude hiding (catch) import Control.Applicative import qualified Control.Exception as E (Exception(..), SomeException, catch, throw, finally) #if __GLASGOW_HASKELL__ >= 700 import qualified Control.Exception as E (mask) #else /* __GLASGOW_HASKELL__ < 700 */ import qualified Control.Exception as E (block, blocked, unblock) #endif /* __GLASGOW_HASKELL__ < 700 */ import Control.Monad (MonadPlus(..)) import Control.Monad.Fix (MonadFix(..)) import Control.Monad.IO.Class (MonadIO(..)) import Control.Monad.Trans.Class (MonadTrans(..)) import Control.Monad.Trans.Error (Error(..), ErrorT(..), mapErrorT, runErrorT) import Control.Monad.Trans.Identity (IdentityT(..), mapIdentityT, runIdentityT) import Control.Monad.Trans.List (ListT(..), mapListT, runListT) import Control.Monad.Trans.Maybe (MaybeT(..), mapMaybeT, runMaybeT) import Control.Monad.Trans.RWS.Lazy as Lazy (RWST(..), mapRWST, runRWST) import Control.Monad.Trans.RWS.Strict as Strict (RWST(..), mapRWST, runRWST) import Control.Monad.Trans.Reader (ReaderT(..), mapReaderT) import Control.Monad.Trans.State.Lazy as Lazy (StateT(..), mapStateT, runStateT) import Control.Monad.Trans.State.Strict as Strict (StateT(..), mapStateT, runStateT) import Control.Monad.Trans.Writer.Lazy as Lazy (WriterT(..), mapWriterT, runWriterT) import Control.Monad.Trans.Writer.Strict as Strict (WriterT(..), mapWriterT, runWriterT) import Data.Monoid (Monoid) #if __GLASGOW_HASKELL__ >= 700 import GHC.Conc.Sync (STM(..), catchSTM, throwSTM) #else /* __GLASGOW_HASKELL__ < 700 */ import GHC.Base (RealWorld, State#, catchSTM#, raiseIO#) import GHC.Conc (STM(..)) #endif /* __GLASGOW_HASKELL__ < 700 */ class (Monad m) => MonadException m where -- | Throw an exception. throw :: E.Exception e => e -> m a -- | Catch an exception. catch :: E.Exception e => m a -- ^ The computation to run -> (e -> m a) -- ^ Handler to invoke if an exception is raised -> m a -- | Run a computation and always perform a second, final computation even -- if an exception is raised. If a short-circuiting monad transformer such -- as ErrorT or MaybeT is used to transform a MonadException monad, then the -- implementation of @finally@ for the transformed monad must guarantee that -- the final action is also always performed when any short-circuiting -- occurs. finally :: m a -- ^ The computation to run -> m b -- ^ Computation to run afterward (even if an exception was -- raised) -> m a act `finally` sequel = do a <- act `onException` sequel _ <- sequel return a -- | If an exception is raised by the computation, then perform a final action -- and re-raise the exception. onException :: MonadException m => m a -- ^ The computation to run -> m b -- ^ Computation to run if an exception is raised -> m a onException act what = act `catch` \(e :: E.SomeException) -> what >> throw e class (MonadIO m, MonadException m) => MonadAsyncException m where -- | Executes a computation with asynchronous exceptions /masked/. The -- argument passed to 'mask' is a function that takes as its argument -- another function, which can be used to restore the prevailing masking -- state within the context of the masked computation. mask :: ((forall a. m a -> m a) -> m b) -> m b -- | When you want to acquire a resource, do some work with it, and then release -- the resource, it is a good idea to use 'bracket', because 'bracket' will -- install the necessary exception handler to release the resource in the event -- that an exception is raised during the computation. If an exception is -- raised, then 'bracket' will re-raise the exception (after performing the -- release). bracket :: MonadAsyncException m => m a -- ^ computation to run first (\"acquire resource\") -> (a -> m b) -- ^ computation to run last (\"release resource\") -> (a -> m c) -- ^ computation to run in-between -> m c -- returns the value from the in-between computation bracket before after thing = mask $ \restore -> do a <- before restore (thing a) `finally` after a -- | A variant of 'bracket' where the return value from the first computation is -- not required. bracket_ :: MonadAsyncException m => m a -> m b -> m c -> m c bracket_ before after thing = bracket before (const after) (const thing) -- -- The ExceptionT monad transformer. -- newtype ExceptionT m a = ExceptionT { runExceptionT :: m (Either E.SomeException a) } mapExceptionT :: (m (Either E.SomeException a) -> n (Either E.SomeException b)) -> ExceptionT m a -> ExceptionT n b mapExceptionT f = ExceptionT . f . runExceptionT -- | Lift the result of running a computation in a monad transformed by -- 'ExceptionT' into another monad that supports exceptions. liftException :: MonadException m => Either E.SomeException a -> m a liftException (Left e) = throw e liftException (Right a) = return a instance MonadTrans ExceptionT where lift m = ExceptionT $ do a <- m return (Right a) instance (Functor m) => Functor (ExceptionT m) where fmap f = ExceptionT . fmap (fmap f) . runExceptionT instance (Monad m) => Monad (ExceptionT m) where return a = ExceptionT $ return (Right a) m >>= k = ExceptionT $ do a <- runExceptionT m case a of Left l -> return (Left l) Right r -> runExceptionT (k r) fail msg = ExceptionT $ return (Left (E.toException (userError msg))) instance (Monad m) => MonadPlus (ExceptionT m) where mzero = ExceptionT $ return (Left (E.toException (userError ""))) m `mplus` n = ExceptionT $ do a <- runExceptionT m case a of Left _ -> runExceptionT n Right r -> return (Right r) instance (Functor m, Monad m) => Applicative (ExceptionT m) where pure a = ExceptionT $ return (Right a) f <*> v = ExceptionT $ do mf <- runExceptionT f case mf of Left e -> return (Left e) Right k -> do mv <- runExceptionT v case mv of Left e -> return (Left e) Right x -> return (Right (k x)) instance (Functor m, Monad m) => Alternative (ExceptionT m) where empty = mzero (<|>) = mplus instance (MonadFix m) => MonadFix (ExceptionT m) where mfix f = ExceptionT $ mfix $ \a -> runExceptionT $ f $ case a of Right r -> r _ -> error "empty mfix argument" instance (Monad m) => MonadException (ExceptionT m) where throw e = ExceptionT $ return (Left (E.toException e)) m `catch` h = ExceptionT $ do a <- runExceptionT m case a of Left l -> case E.fromException l of Just e -> runExceptionT (h e) Nothing -> return (Left l) Right r -> return (Right r) instance (MonadIO m) => MonadIO (ExceptionT m) where liftIO m = ExceptionT $ liftIO $ fmap Right m `E.catch` \(e :: E.SomeException) -> return (Left e) instance (MonadAsyncException m) => MonadAsyncException (ExceptionT m) where mask act = ExceptionT $ mask $ \restore -> runExceptionT $ act (mapExceptionT restore) -- -- Instances for the IO monad. -- instance MonadException IO where catch = E.catch throw = E.throw finally = E.finally #if __GLASGOW_HASKELL__ >= 700 instance MonadAsyncException IO where mask = E.mask #else /* __GLASGOW_HASKELL__ < 700 */ instance MonadAsyncException IO where mask act = do b <- E.blocked if b then act id else E.block $ act E.unblock #endif /* __GLASGOW_HASKELL__ < 700 */ -- -- Instances for the STM monad. -- instance MonadException STM where catch = catchSTM throw = throwSTM #if __GLASGOW_HASKELL__ < 700 unSTM :: STM a -> (State# RealWorld -> (# State# RealWorld, a #)) unSTM (STM a) = a catchSTM :: E.Exception e => STM a -> (e -> STM a) -> STM a catchSTM (STM m) handler = STM $ catchSTM# m handler' where handler' e = case E.fromException e of Just e' -> unSTM (handler e') Nothing -> raiseIO# e throwSTM :: E.Exception e => e -> STM a throwSTM e = STM $ raiseIO# (E.toException e) #endif /* __GLASGOW_HASKELL__ < 700 */ -- -- MonadException instances for transformers. -- instance (MonadException m, Error e) => MonadException (ErrorT e m) where throw = lift . throw m `catch` h = mapErrorT (\m' -> m' `catch` \e -> runErrorT (h e)) m act `finally` sequel = mapErrorT (\act' -> act' `finally` runErrorT sequel) act instance (MonadException m) => MonadException (IdentityT m) where throw = lift . throw m `catch` h = mapIdentityT (\m' -> m' `catch` \e -> runIdentityT (h e)) m instance MonadException m => MonadException (ListT m) where throw = lift . throw m `catch` h = mapListT (\m' -> m' `catch` \e -> runListT (h e)) m instance (MonadException m) => MonadException (MaybeT m) where throw = lift . throw m `catch` h = mapMaybeT (\m' -> m' `catch` \e -> runMaybeT (h e)) m act `finally` sequel = mapMaybeT (\act' -> act' `finally` runMaybeT sequel) act instance (Monoid w, MonadException m) => MonadException (Lazy.RWST r w s m) where throw = lift . throw m `catch` h = Lazy.RWST $ \r s -> Lazy.runRWST m r s `catch` \e -> Lazy.runRWST (h e) r s instance (Monoid w, MonadException m) => MonadException (Strict.RWST r w s m) where throw = lift . throw m `catch` h = Strict.RWST $ \r s -> Strict.runRWST m r s `catch` \e -> Strict.runRWST (h e) r s instance (MonadException m) => MonadException (ReaderT r m) where throw = lift . throw m `catch` h = ReaderT $ \r -> runReaderT m r `catch` \e -> runReaderT (h e) r instance (MonadException m) => MonadException (Lazy.StateT s m) where throw = lift . throw m `catch` h = Lazy.StateT $ \s -> Lazy.runStateT m s `catch` \e -> Lazy.runStateT (h e) s instance (MonadException m) => MonadException (Strict.StateT s m) where throw = lift . throw m `catch` h = Strict.StateT $ \s -> Strict.runStateT m s `catch` \e -> Strict.runStateT (h e) s instance (Monoid w, MonadException m) => MonadException (Lazy.WriterT w m) where throw = lift . throw m `catch` h = Lazy.WriterT $ Lazy.runWriterT m `catch` \e -> Lazy.runWriterT (h e) instance (Monoid w, MonadException m) => MonadException (Strict.WriterT w m) where throw = lift . throw m `catch` h = Strict.WriterT $ Strict.runWriterT m `catch` \e -> Strict.runWriterT (h e) -- -- MonadAsyncException instances for transformers. -- instance (MonadAsyncException m, Error e) => MonadAsyncException (ErrorT e m) where mask act = ErrorT $ mask $ \restore -> runErrorT $ act (mapErrorT restore) instance (MonadAsyncException m) => MonadAsyncException (IdentityT m) where mask act = IdentityT $ mask $ \restore -> runIdentityT $ act (mapIdentityT restore) instance (MonadAsyncException m) => MonadAsyncException (ListT m) where mask act = ListT $ mask $ \restore -> runListT $ act (mapListT restore) instance (MonadAsyncException m) => MonadAsyncException (MaybeT m) where mask act = MaybeT $ mask $ \restore -> runMaybeT $ act (mapMaybeT restore) instance (Monoid w, MonadAsyncException m) => MonadAsyncException (Lazy.RWST r w s m) where mask act = Lazy.RWST $ \r s -> mask $ \restore -> Lazy.runRWST (act (Lazy.mapRWST restore)) r s instance (Monoid w, MonadAsyncException m) => MonadAsyncException (Strict.RWST r w s m) where mask act = Strict.RWST $ \r s -> mask $ \restore -> Strict.runRWST (act (Strict.mapRWST restore)) r s instance (MonadAsyncException m) => MonadAsyncException (ReaderT r m) where mask act = ReaderT $ \r -> mask $ \restore -> runReaderT (act (mapReaderT restore)) r instance (MonadAsyncException m) => MonadAsyncException (Lazy.StateT s m) where mask act = Lazy.StateT $ \s -> mask $ \restore -> Lazy.runStateT (act (Lazy.mapStateT restore)) s instance (MonadAsyncException m) => MonadAsyncException (Strict.StateT s m) where mask act = Strict.StateT $ \s -> mask $ \restore -> Strict.runStateT (act (Strict.mapStateT restore)) s instance (Monoid w, MonadAsyncException m) => MonadAsyncException (Lazy.WriterT w m) where mask act = Lazy.WriterT $ mask $ \restore -> Lazy.runWriterT $ act (Lazy.mapWriterT restore) instance (Monoid w, MonadAsyncException m) => MonadAsyncException (Strict.WriterT w m) where mask act = Strict.WriterT $ mask $ \restore -> Strict.runWriterT $ act (Strict.mapWriterT restore)