{-# Language TemplateHaskell #-} {-# LANGUAGE DeriveDataTypeable, StandaloneDeriving, CPP #-} -- for GHC <= 7.8 -- Example taken from Lee Pike's SmartCheck: -- https://github.com/leepike/SmartCheck/blob/master/paper/paper.pdf -- https://github.com/leepike/smartcheck -- The version here is the one from the paper (similar to the one in the README -- file). I chose the one in the paper as it is clearer. import Control.Monad import Test.Extrapolate hiding (eval) import Data.Maybe #if __GLASGOW_HASKELL__ < 710 import Data.Typeable (Typeable) deriving instance Typeable Exp #endif data Exp a = C a | Add (Exp a) (Exp a) | Div (Exp a) (Exp a) deriving (Eq, Ord, Show) eval :: Integral a => Exp a -> Maybe a eval (C i) = Just i eval (Add e0 e1) = liftM2 (+) (eval e0) (eval e1) eval (Div e0 e1) = let e = eval e1 in if e == Just 0 then Nothing else liftM2 div (eval e0) e -- originally called divSubTerms by Pike noDiv0 :: Integral a => Exp a -> Bool noDiv0 (C _) = True noDiv0 (Div _ (C 0)) = False noDiv0 (Add e0 e1) = noDiv0 e0 && noDiv0 e1 noDiv0 (Div e0 e1) = noDiv0 e0 && noDiv0 e1 prop_div :: Integral a => Exp a -> Bool prop_div e = noDiv0 e ==> eval e /= Nothing instance Listable a => Listable (Exp a) where tiers = cons1 C \/ cons2 Add \/ cons2 Div -- deriveGeneralizable ''Exp -- {- instance Name a => Name (Exp a) where name _ = "e1" instance Express a => Express (Exp a) where expr e@(C i) = value "C" (C ->: e) :$ expr i expr e@(Add e1 e2) = value "Add" (Add ->>: e) :$ expr e1 :$ expr e2 expr e@(Div e1 e2) = value "Div" (Div ->>: e) :$ expr e1 :$ expr e2 instance Generalizable a => Generalizable (Exp a) where subInstances e = instances i where C i = e -- -} argTypeOf :: (a -> b) -> a -> (a -> b) argTypeOf f x = f main :: IO () main = do check (prop_div :: Exp Int -> Bool) check ((isJust . eval) :: Exp Int -> Bool) -- The following generalized counter-example from the paper is wrong! -- > forall x. Div x (Add (C (-5)) (C 5)) print $ prop_div (Div (C 0) (C 0 `Add` C 0)) -- setting x to (Div (C 0) (C 0)) makes the property pass print $ prop_div (Div (C 0 `Div` C 0) (C 0 `Add` C 0)) -- As Lee Pike points out, SmartCheck's algorithm is unsound anyway, -- sometimes returning generalized counter-examples that are *too* general.