-- -- Copyright (c) 2009-2011, ERICSSON AB -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- -- * Redistributions of source code must retain the above copyright notice, -- this list of conditions and the following disclaimer. -- * Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution. -- * Neither the name of the ERICSSON AB nor the names of its contributors -- may be used to endorse or promote products derived from this software -- without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- {-# LANGUAGE UndecidableInstances #-} module Feldspar.Core.Constructs.Num ( NUM (..) ) where import Language.Syntactic import Language.Syntactic.Interpretation.Semantics import Language.Syntactic.Constructs.Binding import Feldspar.Range import Feldspar.Core.Types import Feldspar.Core.Interpretation data NUM a where Abs :: (Type a, Num a, Num (Size a)) => NUM (a :-> Full a) Sign :: (Type a, Num a, Num (Size a)) => NUM (a :-> Full a) Add :: (Type a, Num a, Num (Size a)) => NUM (a :-> a :-> Full a) Sub :: (Type a, Num a, Num (Size a)) => NUM (a :-> a :-> Full a) Mul :: (Type a, Num a, Num (Size a)) => NUM (a :-> a :-> Full a) instance WitnessCons NUM where witnessCons Abs = ConsWit witnessCons Sign = ConsWit witnessCons Add = ConsWit witnessCons Sub = ConsWit witnessCons Mul = ConsWit instance WitnessSat NUM where type SatContext NUM = TypeCtx witnessSat Abs = SatWit witnessSat Sign = SatWit witnessSat Add = SatWit witnessSat Sub = SatWit witnessSat Mul = SatWit instance MaybeWitnessSat TypeCtx NUM where maybeWitnessSat = maybeWitnessSatDefault instance Semantic NUM where semantics Abs = Sem "abs" abs semantics Sign = Sem "signum" signum semantics Add = Sem "(+)" (+) semantics Sub = Sem "(-)" (-) semantics Mul = Sem "(*)" (*) instance ExprEq NUM where exprEq = exprEqSem; exprHash = exprHashSem instance Render NUM where renderPart = renderPartSem instance ToTree NUM instance Eval NUM where evaluate = evaluateSem instance EvalBind NUM where evalBindSym = evalBindSymDefault instance Sharable NUM instance AlphaEq dom dom dom env => AlphaEq NUM NUM dom env where alphaEqSym = alphaEqSymDefault instance SizeProp NUM where sizeProp Abs (WrapFull a :* Nil) = abs (infoSize a) sizeProp Sign (WrapFull a :* Nil) = signum (infoSize a) sizeProp Add (WrapFull a :* WrapFull b :* Nil) = infoSize a + infoSize b sizeProp Sub (WrapFull a :* WrapFull b :* Nil) = infoSize a - infoSize b sizeProp Mul (WrapFull a :* WrapFull b :* Nil) = infoSize a * infoSize b instance (NUM :<: dom, Optimize dom dom) => Optimize NUM dom where constructFeatOpt Abs (a :* Nil) | RangeSet r <- infoRange (getInfo a) , isNatural r = return a constructFeatOpt Sign (a :* Nil) | RangeSet ra <- infoRange (getInfo a) , 0 `rangeLess` ra = return (literalDecor 1) constructFeatOpt Sign (a :* Nil) | RangeSet ra <- infoRange (getInfo a) , ra `rangeLess` 0 = return (literalDecor (-1)) constructFeatOpt Add (a :* b :* Nil) | Just 0 <- viewLiteral b = return a | Just 0 <- viewLiteral a = return b constructFeatOpt Add (a :* (op :$ b :$ c) :* Nil) | Just a' <- viewLiteral a , Just (_,Add) <- prjDecor op , Just c' <- viewLiteral c = constructFeat Add (b :* literalDecor (a'+c') :* Nil) constructFeatOpt Add (a :* (op :$ b :$ c) :* Nil) | Just a' <- viewLiteral a , Just (_,Sub) <- prjDecor op , Just c' <- viewLiteral c = constructFeat Add (b :* literalDecor (a'-c') :* Nil) constructFeatOpt Add ((op :$ a :$ b) :* c :* Nil) | Just c' <- viewLiteral c , Just (_,Add) <- prjDecor op , Just b' <- viewLiteral b = constructFeat Add (a :* literalDecor (b'+c') :* Nil) constructFeatOpt Add ((op :$ a :$ b) :* c :* Nil) | Just c' <- viewLiteral c , Just (_,Sub) <- prjDecor op , Just b' <- viewLiteral b = constructFeat Add (a :* literalDecor (c'-b') :* Nil) constructFeatOpt Add ((op1 :$ a :$ b) :* (op2 :$ c :$ d) :* Nil) | Just (_,Add) <- prjDecor op1 , Just (_,Add) <- prjDecor op2 , Just b' <- viewLiteral b , Just d' <- viewLiteral d = do ac <- constructFeat Add (a :* c :* Nil) constructFeat Add (ac :* literalDecor (b'+d') :* Nil) constructFeatOpt Sub (a :* b :* Nil) | Just 0 <- viewLiteral b = return a | alphaEq a b = return $ literalDecor 0 constructFeatOpt Mul (a :* b :* Nil) | Just 0 <- viewLiteral a = return a | Just 1 <- viewLiteral a = return b | Just 0 <- viewLiteral b = return b | Just 1 <- viewLiteral b = return a constructFeatOpt Mul (a :* (op :$ b :$ c) :* Nil) | Just a' <- viewLiteral a , Just (_,Mul) <- prjDecor op , Just c' <- viewLiteral c = constructFeat Mul (b :* literalDecor (a'*c') :* Nil) constructFeatOpt Mul ((op :$ a :$ b) :* c :* Nil) | Just c' <- viewLiteral c , Just (_,Mul) <- prjDecor op , Just b' <- viewLiteral b = constructFeat Mul (a :* literalDecor (b'*c') :* Nil) constructFeatOpt Mul ((op1 :$ a :$ b) :* (op2 :$ c :$ d) :* Nil) | Just (_,Mul) <- prjDecor op1 , Just (_,Mul) <- prjDecor op2 , Just b' <- viewLiteral b , Just d' <- viewLiteral d = do ac <- constructFeat Mul (a :* c :* Nil) constructFeat Mul (ac :* literalDecor (b'*d') :* Nil) -- Cases to make sure literals end up to the right: constructFeatOpt Add (a :* b :* Nil) | Just a' <- viewLiteral a = constructFeatUnOpt Add (b :* a :* Nil) constructFeatOpt Mul (a :* b :* Nil) | Just a' <- viewLiteral a = constructFeatUnOpt Mul (b :* a :* Nil) constructFeatOpt a args = constructFeatUnOpt a args constructFeatUnOpt = constructFeatUnOptDefault -- TODO Improve algebraic simplification -- -- The current implementation is quite incomplete and it only deals with merging -- literals, so it can't cancel out variables; e.g. -- -- (x+x)-x ===> x -- -- It would be better to optimize a whole arithmetic expression at once. Gather -- all variables in one list, all literals in one list and all non-arithmetic -- sub-terms in one list. Then make a new optimized expression by combining the -- three lists. -- -- However, doing this compositionally will probably lead to a lot of -- re-traversals of the same sub-terms, so the optimization framework will -- probably have to be modified so that arithmetic optimization only happens at -- feasible places (i.e. arithmetic sub-terms whose parents are not arithmetic -- expressions).