{-| This module provides efficient and streaming left folds that you can combine using 'Applicative' style. Import this module qualified to avoid clashing with the Prelude: >>> import qualified Control.Foldl as L Use 'fold' to apply a 'Fold' to a list: >>> L.fold L.sum [1..100] 5050 'Fold's are 'Applicative's, so you can combine them using 'Applicative' combinators: >>> import Control.Applicative >>> let average = (/) <$> L.sum <*> L.genericLength Taking the sum, the sum of squares, ..., upto the sum of x^5 >>> import Data.Traversable >>> let powerSums = sequenceA [L.premap (^n) L.sum | n <- [1..5]] >>> L.fold powerSums [1..10] [55,385,3025,25333,220825] These combined folds will still traverse the list only once, streaming efficiently over the list in constant space without space leaks: >>> L.fold average [1..10000000] 5000000.5 >>> L.fold ((,) <$> L.minimum <*> L.maximum) [1..10000000] (Just 1,Just 10000000) You might want to try enabling the @-flate-dmd-anal@ flag when compiling executables that use this library to further improve performance. -} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE Trustworthy #-} module Control.Foldl ( -- * Fold Types Fold(..) , FoldM(..) -- * Folding , fold , foldM , scan #if MIN_VERSION_base(4,8,0) , prescan , postscan #else #endif -- * Folds , Control.Foldl.mconcat , Control.Foldl.foldMap , head , last , lastDef , lastN , null , length , and , or , all , any , sum , product , mean , variance , std , maximum , maximumBy , minimum , minimumBy , elem , notElem , find , index , lookup , elemIndex , findIndex , random , randomN , Control.Foldl.mapM_ , sink -- * Generic Folds , genericLength , genericIndex -- * Container folds , list , revList , nub , eqNub , set , hashSet , map , hashMap , vector , vectorM -- * Utilities -- $utilities , purely , purely_ , impurely , impurely_ , generalize , simplify , hoists , duplicateM , _Fold1 , premap , premapM , prefilter , prefilterM , Handler , handles , foldOver , EndoM(..) , HandlerM , handlesM , foldOverM , folded , filtered , groupBy -- * Re-exports -- $reexports , module Control.Monad.Primitive , module Data.Foldable , module Data.Vector.Generic ) where import Control.Applicative import Control.Foldl.Internal (Maybe'(..), lazy, Either'(..), hush) import Control.Monad ((<=<)) import Control.Monad.Primitive (PrimMonad, RealWorld) import Control.Comonad import Data.Foldable (Foldable) import Data.Functor.Identity (Identity, runIdentity) import Data.Functor.Contravariant (Contravariant(..)) import Data.Map.Strict (Map, alter) import Data.Maybe (fromMaybe) import Data.Monoid hiding ((<>)) import Data.Semigroup (Semigroup(..)) import Data.Profunctor import Data.Sequence ((|>)) import Data.Vector.Generic (Vector, Mutable) import Data.Vector.Generic.Mutable (MVector) import Data.Hashable (Hashable) import System.Random.MWC (GenIO, createSystemRandom, uniformR) import Prelude hiding ( head , last , null , length , and , or , all , any , sum , product , maximum , minimum , elem , notElem , lookup , map ) import qualified Data.Foldable as F import qualified Data.List as List import qualified Data.Sequence as Seq import qualified Data.Set as Set import qualified Data.Map.Strict as Map import qualified Data.HashMap.Strict as HashMap import qualified Data.HashSet as HashSet import qualified Data.Vector.Generic as V import qualified Data.Vector.Generic.Mutable as M import qualified VectorBuilder.Builder import qualified VectorBuilder.Vector {-| Efficient representation of a left fold that preserves the fold's step function, initial accumulator, and extraction function This allows the 'Applicative' instance to assemble derived folds that traverse the container only once A \''Fold' a b\' processes elements of type __a__ and results in a value of type __b__. -} data Fold a b -- | @Fold @ @ step @ @ initial @ @ extract@ = forall x. Fold (x -> a -> x) x (x -> b) data Pair a b = Pair !a !b instance Functor (Fold a) where fmap f (Fold step begin done) = Fold step begin (f . done) {-# INLINE fmap #-} instance Profunctor Fold where lmap = premap rmap = fmap instance Choice Fold where right' (Fold step begin done) = Fold (liftA2 step) (Right begin) (fmap done) {-# INLINE right' #-} instance Comonad (Fold a) where extract (Fold _ begin done) = done begin {-# INLINE extract #-} duplicate (Fold step begin done) = Fold step begin (\x -> Fold step x done) {-# INLINE duplicate #-} instance Applicative (Fold a) where pure b = Fold (\() _ -> ()) () (\() -> b) {-# INLINE pure #-} (Fold stepL beginL doneL) <*> (Fold stepR beginR doneR) = let step (Pair xL xR) a = Pair (stepL xL a) (stepR xR a) begin = Pair beginL beginR done (Pair xL xR) = doneL xL (doneR xR) in Fold step begin done {-# INLINE (<*>) #-} instance Monoid b => Semigroup (Fold a b) where (<>) = liftA2 mappend {-# INLINE (<>) #-} instance Monoid b => Monoid (Fold a b) where mempty = pure mempty {-# INLINE mempty #-} mappend = (<>) {-# INLINE mappend #-} instance Num b => Num (Fold a b) where fromInteger = pure . fromInteger {-# INLINE fromInteger #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} (+) = liftA2 (+) {-# INLINE (+) #-} (*) = liftA2 (*) {-# INLINE (*) #-} (-) = liftA2 (-) {-# INLINE (-) #-} instance Fractional b => Fractional (Fold a b) where fromRational = pure . fromRational {-# INLINE fromRational #-} recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} instance Floating b => Floating (Fold a b) where pi = pure pi {-# INLINE pi #-} exp = fmap exp {-# INLINE exp #-} sqrt = fmap sqrt {-# INLINE sqrt #-} log = fmap log {-# INLINE log #-} sin = fmap sin {-# INLINE sin #-} tan = fmap tan {-# INLINE tan #-} cos = fmap cos {-# INLINE cos #-} asin = fmap asin {-# INLINE asin #-} atan = fmap atan {-# INLINE atan #-} acos = fmap acos {-# INLINE acos #-} sinh = fmap sinh {-# INLINE sinh #-} tanh = fmap tanh {-# INLINE tanh #-} cosh = fmap cosh {-# INLINE cosh #-} asinh = fmap asinh {-# INLINE asinh #-} atanh = fmap atanh {-# INLINE atanh #-} acosh = fmap acosh {-# INLINE acosh #-} (**) = liftA2 (**) {-# INLINE (**) #-} logBase = liftA2 logBase {-# INLINE logBase #-} {-| Like 'Fold', but monadic. A \''FoldM' m a b\' processes elements of type __a__ and results in a monadic value of type __m b__. -} data FoldM m a b = -- | @FoldM @ @ step @ @ initial @ @ extract@ forall x . FoldM (x -> a -> m x) (m x) (x -> m b) instance Monad m => Functor (FoldM m a) where fmap f (FoldM step start done) = FoldM step start done' where done' x = do b <- done x return $! f b {-# INLINE fmap #-} instance Monad m => Applicative (FoldM m a) where pure b = FoldM (\() _ -> return ()) (return ()) (\() -> return b) {-# INLINE pure #-} (FoldM stepL beginL doneL) <*> (FoldM stepR beginR doneR) = let step (Pair xL xR) a = do xL' <- stepL xL a xR' <- stepR xR a return $! Pair xL' xR' begin = do xL <- beginL xR <- beginR return $! Pair xL xR done (Pair xL xR) = do f <- doneL xL x <- doneR xR return $! f x in FoldM step begin done {-# INLINE (<*>) #-} instance Monad m => Profunctor (FoldM m) where rmap = fmap lmap = premapM instance (Monoid b, Monad m) => Semigroup (FoldM m a b) where (<>) = liftA2 mappend {-# INLINE (<>) #-} instance (Monoid b, Monad m) => Monoid (FoldM m a b) where mempty = pure mempty {-# INLINE mempty #-} mappend = liftA2 mappend {-# INLINE mappend #-} instance (Monad m, Num b) => Num (FoldM m a b) where fromInteger = pure . fromInteger {-# INLINE fromInteger #-} negate = fmap negate {-# INLINE negate #-} abs = fmap abs {-# INLINE abs #-} signum = fmap signum {-# INLINE signum #-} (+) = liftA2 (+) {-# INLINE (+) #-} (*) = liftA2 (*) {-# INLINE (*) #-} (-) = liftA2 (-) {-# INLINE (-) #-} instance (Monad m, Fractional b) => Fractional (FoldM m a b) where fromRational = pure . fromRational {-# INLINE fromRational #-} recip = fmap recip {-# INLINE recip #-} (/) = liftA2 (/) {-# INLINE (/) #-} instance (Monad m, Floating b) => Floating (FoldM m a b) where pi = pure pi {-# INLINE pi #-} exp = fmap exp {-# INLINE exp #-} sqrt = fmap sqrt {-# INLINE sqrt #-} log = fmap log {-# INLINE log #-} sin = fmap sin {-# INLINE sin #-} tan = fmap tan {-# INLINE tan #-} cos = fmap cos {-# INLINE cos #-} asin = fmap asin {-# INLINE asin #-} atan = fmap atan {-# INLINE atan #-} acos = fmap acos {-# INLINE acos #-} sinh = fmap sinh {-# INLINE sinh #-} tanh = fmap tanh {-# INLINE tanh #-} cosh = fmap cosh {-# INLINE cosh #-} asinh = fmap asinh {-# INLINE asinh #-} atanh = fmap atanh {-# INLINE atanh #-} acosh = fmap acosh {-# INLINE acosh #-} (**) = liftA2 (**) {-# INLINE (**) #-} logBase = liftA2 logBase {-# INLINE logBase #-} -- | Apply a strict left 'Fold' to a 'Foldable' container fold :: Foldable f => Fold a b -> f a -> b fold (Fold step begin done) as = F.foldr cons done as begin where cons a k x = k $! step x a {-# INLINE fold #-} -- | Like 'fold', but monadic foldM :: (Foldable f, Monad m) => FoldM m a b -> f a -> m b foldM (FoldM step begin done) as0 = do x0 <- begin F.foldr step' done as0 $! x0 where step' a k x = do x' <- step x a k $! x' {-# INLINE foldM #-} -- | Convert a strict left 'Fold' into a scan scan :: Fold a b -> [a] -> [b] scan (Fold step begin done) as = foldr cons nil as begin where nil x = done x:[] cons a k x = done x:(k $! step x a) {-# INLINE scan #-} #if MIN_VERSION_base(4,8,0) {-| Convert a `Fold` into a prescan for any `Traversable` type \"Prescan\" means that the last element of the scan is not included -} prescan :: Traversable t => Fold a b -> t a -> t b prescan (Fold step begin done) as = bs where step' x a = (x', b) where x' = step x a b = done x (_, bs) = List.mapAccumL step' begin as {-# INLINE prescan #-} {-| Convert a `Fold` into a postscan for any `Traversable` type \"Postscan\" means that the first element of the scan is not included -} postscan :: Traversable t => Fold a b -> t a -> t b postscan (Fold step begin done) as = bs where step' x a = (x', b) where x' = step x a b = done x' (_, bs) = List.mapAccumL step' begin as {-# INLINE postscan #-} #else #endif -- | Fold all values within a container using 'mappend' and 'mempty' mconcat :: Monoid a => Fold a a mconcat = Fold mappend mempty id {-# INLINABLE mconcat #-} -- | Convert a \"@foldMap@\" to a 'Fold' foldMap :: Monoid w => (a -> w) -> (w -> b) -> Fold a b foldMap to = Fold (\x a -> mappend x (to a)) mempty {-# INLINABLE foldMap #-} {-| Get the first element of a container or return 'Nothing' if the container is empty -} head :: Fold a (Maybe a) head = _Fold1 const {-# INLINABLE head #-} {-| Get the last element of a container or return 'Nothing' if the container is empty -} last :: Fold a (Maybe a) last = _Fold1 (flip const) {-# INLINABLE last #-} {-| Get the last element of a container or return a default value if the container is empty -} lastDef :: a -> Fold a a lastDef a = Fold (\_ a' -> a') a id {-# INLINABLE lastDef #-} {-| Return the last N elements -} lastN :: Int -> Fold a [a] lastN n = Fold step begin done where step s a = s' |> a where s' = if Seq.length s < n then s else Seq.drop 1 s begin = Seq.empty done = F.toList {-# INLINABLE lastN #-} -- | Returns 'True' if the container is empty, 'False' otherwise null :: Fold a Bool null = Fold (\_ _ -> False) True id {-# INLINABLE null #-} -- | Return the length of the container length :: Fold a Int length = genericLength {- Technically, 'length' is just 'genericLength' specialized to 'Int's. I keep the two separate so that I can later provide an 'Int'-specialized implementation of 'length' for performance reasons like "GHC.List" does without breaking backwards compatibility. -} {-# INLINABLE length #-} -- | Returns 'True' if all elements are 'True', 'False' otherwise and :: Fold Bool Bool and = Fold (&&) True id {-# INLINABLE and #-} -- | Returns 'True' if any element is 'True', 'False' otherwise or :: Fold Bool Bool or = Fold (||) False id {-# INLINABLE or #-} {-| @(all predicate)@ returns 'True' if all elements satisfy the predicate, 'False' otherwise -} all :: (a -> Bool) -> Fold a Bool all predicate = Fold (\x a -> x && predicate a) True id {-# INLINABLE all #-} {-| @(any predicate)@ returns 'True' if any element satisfies the predicate, 'False' otherwise -} any :: (a -> Bool) -> Fold a Bool any predicate = Fold (\x a -> x || predicate a) False id {-# INLINABLE any #-} -- | Computes the sum of all elements sum :: Num a => Fold a a sum = Fold (+) 0 id {-# INLINABLE sum #-} -- | Computes the product of all elements product :: Num a => Fold a a product = Fold (*) 1 id {-# INLINABLE product #-} -- | Compute a numerically stable arithmetic mean of all elements mean :: Fractional a => Fold a a mean = Fold step begin done where begin = Pair 0 0 step (Pair x n) y = Pair ((x * n + y) / (n + 1)) (n + 1) done (Pair x _) = x {-# INLINABLE mean #-} -- | Compute a numerically stable (population) variance over all elements variance :: Fractional a => Fold a a variance = Fold step begin done where begin = Pair3 0 0 0 step (Pair3 n mean_ m2) x = Pair3 n' mean' m2' where n' = n + 1 mean' = (n * mean_ + x) / (n + 1) delta = x - mean_ m2' = m2 + delta * delta * n / (n + 1) done (Pair3 n _ m2) = m2 / n {-# INLINABLE variance #-} {-| Compute a numerically stable (population) standard deviation over all elements -} std :: Floating a => Fold a a std = sqrt variance {-# INLINABLE std #-} -- | Computes the maximum element maximum :: Ord a => Fold a (Maybe a) maximum = _Fold1 max {-# INLINABLE maximum #-} {-| Computes the maximum element with respect to the given comparison function -} maximumBy :: (a -> a -> Ordering) -> Fold a (Maybe a) maximumBy cmp = _Fold1 max' where max' x y = case cmp x y of GT -> x _ -> y {-# INLINABLE maximumBy #-} -- | Computes the minimum element minimum :: Ord a => Fold a (Maybe a) minimum = _Fold1 min {-# INLINABLE minimum #-} {-| Computes the minimum element with respect to the given comparison function -} minimumBy :: (a -> a -> Ordering) -> Fold a (Maybe a) minimumBy cmp = _Fold1 min' where min' x y = case cmp x y of GT -> y _ -> x {-# INLINABLE minimumBy #-} {-| @(elem a)@ returns 'True' if the container has an element equal to @a@, 'False' otherwise -} elem :: Eq a => a -> Fold a Bool elem a = any (a ==) {-# INLINABLE elem #-} {-| @(notElem a)@ returns 'False' if the container has an element equal to @a@, 'True' otherwise -} notElem :: Eq a => a -> Fold a Bool notElem a = all (a /=) {-# INLINABLE notElem #-} {-| @(find predicate)@ returns the first element that satisfies the predicate or 'Nothing' if no element satisfies the predicate -} find :: (a -> Bool) -> Fold a (Maybe a) find predicate = Fold step Nothing' lazy where step x a = case x of Nothing' -> if predicate a then Just' a else Nothing' _ -> x {-# INLINABLE find #-} {-| @(index n)@ returns the @n@th element of the container, or 'Nothing' if the container has an insufficient number of elements -} index :: Int -> Fold a (Maybe a) index = genericIndex {-# INLINABLE index #-} {-| @(elemIndex a)@ returns the index of the first element that equals @a@, or 'Nothing' if no element matches -} elemIndex :: Eq a => a -> Fold a (Maybe Int) elemIndex a = findIndex (a ==) {-# INLINABLE elemIndex #-} {-| @(findIndex predicate)@ returns the index of the first element that satisfies the predicate, or 'Nothing' if no element satisfies the predicate -} findIndex :: (a -> Bool) -> Fold a (Maybe Int) findIndex predicate = Fold step (Left' 0) hush where step x a = case x of Left' i -> if predicate a then Right' i else Left' (i + 1) _ -> x {-# INLINABLE findIndex #-} {-| @(lookup a)@ returns the element paired with the first matching item, or 'Nothing' if none matches -} lookup :: Eq a => a -> Fold (a,b) (Maybe b) lookup a0 = Fold step Nothing' lazy where step x (a,b) = case x of Nothing' -> if a == a0 then Just' b else Nothing' _ -> x {-# INLINABLE lookup #-} data Pair3 a b c = Pair3 !a !b !c -- | Pick a random element, using reservoir sampling random :: FoldM IO a (Maybe a) random = FoldM step begin done where begin = do g <- createSystemRandom return $! Pair3 g Nothing' (1 :: Int) step (Pair3 g Nothing' _) a = return $! Pair3 g (Just' a) 2 step (Pair3 g (Just' a) m) b = do n <- uniformR (1, m) g let c = if n == 1 then b else a return $! Pair3 g (Just' c) (m + 1) done (Pair3 _ ma _) = return (lazy ma) {-# INLINABLE random #-} data VectorState = Incomplete {-# UNPACK #-} !Int | Complete data RandomNState v a = RandomNState { _size :: !VectorState , _reservoir :: !(Mutable v RealWorld a) , _position :: {-# UNPACK #-} !Int , _gen :: {-# UNPACK #-} !GenIO } -- | Pick several random elements, using reservoir sampling randomN :: Vector v a => Int -> FoldM IO a (Maybe (v a)) randomN n = FoldM step begin done where step :: MVector (Mutable v) a => RandomNState v a -> a -> IO (RandomNState v a) step (RandomNState (Incomplete m) mv i g) a = do M.write mv m a let m' = m + 1 let s = if n <= m' then Complete else Incomplete m' return $! RandomNState s mv (i + 1) g step (RandomNState Complete mv i g) a = do r <- uniformR (0, i - 1) g if r < n then M.unsafeWrite mv r a else return () return (RandomNState Complete mv (i + 1) g) begin = do mv <- M.new n gen <- createSystemRandom let s = if n <= 0 then Complete else Incomplete 0 return (RandomNState s mv 1 gen) done :: Vector v a => RandomNState v a -> IO (Maybe (v a)) done (RandomNState (Incomplete _) _ _ _) = return Nothing done (RandomNState Complete mv _ _) = do v <- V.freeze mv return (Just v) -- | Converts an effectful function to a fold. Specialized version of 'sink'. mapM_ :: Monad m => (a -> m ()) -> FoldM m a () mapM_ = sink {-# INLINABLE mapM_ #-} {-| Converts an effectful function to a fold > sink (f <> g) = sink f <> sink g -- if `(<>)` is commutative > sink mempty = mempty -} sink :: (Monoid w, Monad m) => (a -> m w) -> FoldM m a w sink act = FoldM step begin done where done = return begin = return mempty step m a = do m' <- act a return $! mappend m m' {-# INLINABLE sink #-} -- | Like 'length', except with a more general 'Num' return value genericLength :: Num b => Fold a b genericLength = Fold (\n _ -> n + 1) 0 id {-# INLINABLE genericLength #-} -- | Like 'index', except with a more general 'Integral' argument genericIndex :: Integral i => i -> Fold a (Maybe a) genericIndex i = Fold step (Left' 0) done where step x a = case x of Left' j -> if i == j then Right' a else Left' (j + 1) _ -> x done x = case x of Left' _ -> Nothing Right' a -> Just a {-# INLINABLE genericIndex #-} -- | Fold all values into a list list :: Fold a [a] list = Fold (\x a -> x . (a:)) id ($ []) {-# INLINABLE list #-} -- | Fold all values into a list, in reverse order revList :: Fold a [a] revList = Fold (\x a -> a:x) [] id {-# INLINABLE revList #-} {-| /O(n log n)/. Fold values into a list with duplicates removed, while preserving their first occurrences -} nub :: Ord a => Fold a [a] nub = Fold step (Pair Set.empty id) fin where step (Pair s r) a = if Set.member a s then Pair s r else Pair (Set.insert a s) (r . (a :)) fin (Pair _ r) = r [] {-# INLINABLE nub #-} {-| /O(n^2)/. Fold values into a list with duplicates removed, while preserving their first occurrences -} eqNub :: Eq a => Fold a [a] eqNub = Fold step (Pair [] id) fin where step (Pair known r) a = if List.elem a known then Pair known r else Pair (a : known) (r . (a :)) fin (Pair _ r) = r [] {-# INLINABLE eqNub #-} -- | Fold values into a set set :: Ord a => Fold a (Set.Set a) set = Fold (flip Set.insert) Set.empty id {-# INLINABLE set #-} -- | Fold values into a hash-set hashSet :: (Eq a, Hashable a) => Fold a (HashSet.HashSet a) hashSet = Fold (flip HashSet.insert) HashSet.empty id {-# INLINABLE hashSet #-} {-| Fold pairs into a map. -} map :: Ord a => Fold (a, b) (Map.Map a b) map = Fold step begin done where begin = mempty step m (k, v) = Map.insert k v m done = id {-# INLINABLE map #-} {-| Fold pairs into a hash-map. -} hashMap :: (Eq a, Hashable a) => Fold (a, b) (HashMap.HashMap a b) hashMap = Fold step begin done where begin = mempty step m (k, v) = HashMap.insert k v m done = id {-# INLINABLE hashMap #-} -- | Fold all values into a vector vector :: Vector v a => Fold a (v a) vector = Fold step begin done where begin = VectorBuilder.Builder.empty step x a = x <> VectorBuilder.Builder.singleton a done = VectorBuilder.Vector.build {-# INLINABLE vector #-} maxChunkSize :: Int maxChunkSize = 8 * 1024 * 1024 {-| Fold all values into a vector This is more efficient than `vector` but is impure -} vectorM :: (PrimMonad m, Vector v a) => FoldM m a (v a) vectorM = FoldM step begin done where begin = do mv <- M.unsafeNew 10 return (Pair mv 0) step (Pair mv idx) a = do let len = M.length mv mv' <- if idx >= len then M.unsafeGrow mv (min len maxChunkSize) else return mv M.unsafeWrite mv' idx a return (Pair mv' (idx + 1)) done (Pair mv idx) = do v <- V.freeze mv return (V.unsafeTake idx v) {-# INLINABLE vectorM #-} {- $utilities 'purely' and 'impurely' allow you to write folds compatible with the @foldl@ library without incurring a @foldl@ dependency. Write your fold to accept three parameters corresponding to the step function, initial accumulator, and extraction function and then users can upgrade your function to accept a 'Fold' or 'FoldM' using the 'purely' or 'impurely' combinators. For example, the @pipes@ library implements @fold@ and @foldM@ functions in @Pipes.Prelude@ with the following type: > Pipes.Prelude.fold > :: Monad m > -> (x -> a -> x) -> x -> (x -> b) -> Producer a m () -> m b > > Pipes.Prelude.foldM > :: Monad m > => (x -> a -> m x) -> m x -> (x -> m b) -> Producer a m () -> m b Both @fold@ and @foldM@ is set up so that you can wrap them with either 'purely' or 'impurely' to accept a 'Fold' or 'FoldM', respectively: > purely Pipes.Prelude.fold > :: Monad m => Fold a b -> Producer a m () -> m b > > impurely Pipes.Prelude.foldM > :: Monad m => FoldM m a b -> Producer a m () -> m b Other streaming libraries supporting 'purely' and 'impurely' include @io-streams@ and @streaming@. So for example we have: > purely System.IO.Streams.fold_ > :: Fold a b -> Streams.InputStream a -> IO b > > impurely System.IO.Streams.foldM_ > :: FoldM IO a b -> Streams.InputStream a -> IO b The @monotraversable@ package makes it convenient to apply a 'Fold' or 'FoldM' to pure containers that do not allow a general 'Foldable' instance, like unboxed vectors: > purely ofoldlUnwrap > :: MonoFoldable mono > => Fold (Element mono) b -> mono -> b > > impurely ofoldMUnwrap > :: MonoFoldable mono > => FoldM m (Element mono) b -> mono -> m b -} -- | Upgrade a fold to accept the 'Fold' type purely :: (forall x . (x -> a -> x) -> x -> (x -> b) -> r) -> Fold a b -> r purely f (Fold step begin done) = f step begin done {-# INLINABLE purely #-} -- | Upgrade a more traditional fold to accept the `Fold` type purely_ :: (forall x . (x -> a -> x) -> x -> x) -> Fold a b -> b purely_ f (Fold step begin done) = done (f step begin) {-# INLINABLE purely_ #-} -- | Upgrade a monadic fold to accept the 'FoldM' type impurely :: (forall x . (x -> a -> m x) -> m x -> (x -> m b) -> r) -> FoldM m a b -> r impurely f (FoldM step begin done) = f step begin done {-# INLINABLE impurely #-} -- | Upgrade a more traditional monadic fold to accept the `FoldM` type impurely_ :: Monad m => (forall x . (x -> a -> m x) -> m x -> m x) -> FoldM m a b -> m b impurely_ f (FoldM step begin done) = do x <- f step begin done x {-# INLINABLE impurely_ #-} {-| Generalize a `Fold` to a `FoldM` > generalize (pure r) = pure r > > generalize (f <*> x) = generalize f <*> generalize x -} generalize :: Monad m => Fold a b -> FoldM m a b generalize (Fold step begin done) = FoldM step' begin' done' where step' x a = return (step x a) begin' = return begin done' x = return (done x) {-# INLINABLE generalize #-} {-| Simplify a pure `FoldM` to a `Fold` > simplify (pure r) = pure r > > simplify (f <*> x) = simplify f <*> simplify x -} simplify :: FoldM Identity a b -> Fold a b simplify (FoldM step begin done) = Fold step' begin' done' where step' x a = runIdentity (step x a) begin' = runIdentity begin done' x = runIdentity (done x) {-# INLINABLE simplify #-} {- | Shift a 'FoldM' from one monad to another with a morphism such as 'lift' or 'liftIO'; the effect is the same as 'Control.Monad.Morph.hoist'. -} hoists :: (forall x . m x -> n x) -> FoldM m a b -> FoldM n a b hoists phi (FoldM step begin done) = FoldM (\a b -> phi (step a b)) (phi begin) (phi . done) {-# INLINABLE hoists #-} {-| Allows to continue feeding a 'FoldM' even after passing it to a function that closes it. For pure 'Fold's, this is provided by the 'Control.Comonad.Comonad' instance. -} duplicateM :: Applicative m => FoldM m a b -> FoldM m a (FoldM m a b) duplicateM (FoldM step begin done) = FoldM step begin (\x -> pure (FoldM step (pure x) done)) {-# INLINABLE duplicateM #-} {-| @_Fold1 step@ returns a new 'Fold' using just a step function that has the same type for the accumulator and the element. The result type is the accumulator type wrapped in 'Maybe'. The initial accumulator is retrieved from the 'Foldable', the result is 'None' for empty containers. -} _Fold1 :: (a -> a -> a) -> Fold a (Maybe a) _Fold1 step = Fold step_ Nothing' lazy where step_ mx a = Just' (case mx of Nothing' -> a Just' x -> step x a) {-# INLINABLE _Fold1 #-} {-| @(premap f folder)@ returns a new 'Fold' where f is applied at each step > fold (premap f folder) list = fold folder (map f list) >>> fold (premap Sum mconcat) [1..10] Sum {getSum = 55} >>> fold mconcat (map Sum [1..10]) Sum {getSum = 55} > premap id = id > > premap (f . g) = premap g . premap f > premap k (pure r) = pure r > > premap k (f <*> x) = premap k f <*> premap k x -} premap :: (a -> b) -> Fold b r -> Fold a r premap f (Fold step begin done) = Fold step' begin done where step' x a = step x (f a) {-# INLINABLE premap #-} {-| @(premapM f folder)@ returns a new 'FoldM' where f is applied to each input element > foldM (premapM f folder) list = foldM folder (map f list) > premapM id = id > > premapM (f . g) = premap g . premap f > premapM k (pure r) = pure r > > premapM k (f <*> x) = premapM k f <*> premapM k x -} premapM :: (a -> b) -> FoldM m b r -> FoldM m a r premapM f (FoldM step begin done) = FoldM step' begin done where step' x a = step x (f a) {-# INLINABLE premapM #-} {-| @(prefilter f folder)@ returns a new 'Fold' where the folder's input is used only when the input satisfies a predicate f This can also be done with 'handles' (@handles (filtered f)@) but @prefilter@ does not need you to depend on a lens library. > fold (prefilter p folder) list = fold folder (filter p list) >>> fold (prefilter (>5) Control.Foldl.sum) [1..10] 40 >>> fold Control.Foldl.sum (filter (>5) [1..10]) 40 -} prefilter :: (a -> Bool) -> Fold a r -> Fold a r prefilter f (Fold step begin done) = Fold step' begin done where step' x a = if f a then step x a else x {-# INLINABLE prefilter #-} {-| @(prefilterM f folder)@ returns a new 'Fold' where the folder's input is used only when the input satisfies a monadic predicate f. > foldM (prefilterM p folder) list = foldM folder (filter p list) -} prefilterM :: (Monad m) => (a -> m Bool) -> FoldM m a r -> FoldM m a r prefilterM f (FoldM step begin done) = FoldM step' begin done where step' x a = do use <- f a if use then step x a else return x {-# INLINABLE prefilterM #-} {-| A handler for the upstream input of a `Fold` Any lens, traversal, or prism will type-check as a `Handler` -} type Handler a b = forall x . (b -> Const (Dual (Endo x)) b) -> a -> Const (Dual (Endo x)) a {-| @(handles t folder)@ transforms the input of a `Fold` using a lens, traversal, or prism: > handles _1 :: Fold a r -> Fold (a, b) r > handles _Left :: Fold a r -> Fold (Either a b) r > handles traverse :: Traversable t => Fold a r -> Fold (t a) r > handles folded :: Foldable t => Fold a r -> Fold (t a) r >>> fold (handles traverse sum) [[1..5],[6..10]] 55 >>> fold (handles (traverse.traverse) sum) [[Nothing, Just 2, Just 7],[Just 13, Nothing, Just 20]] 42 >>> fold (handles (filtered even) sum) [1..10] 30 >>> fold (handles _2 mconcat) [(1,"Hello "),(2,"World"),(3,"!")] "Hello World!" > handles id = id > > handles (f . g) = handles f . handles g > handles t (pure r) = pure r > > handles t (f <*> x) = handles t f <*> handles t x -} handles :: Handler a b -> Fold b r -> Fold a r handles k (Fold step begin done) = Fold step' begin done where step' = flip (appEndo . getDual . getConst . k (Const . Dual . Endo . flip step)) {-# INLINABLE handles #-} {- | @(foldOver f folder xs)@ folds all values from a Lens, Traversal, Prism or Fold with the given folder >>> foldOver (_Just . both) L.sum (Just (2, 3)) 5 >>> foldOver (_Just . both) L.sum Nothing 0 > L.foldOver f folder xs == L.fold folder (xs^..f) > L.foldOver (folded.f) folder == L.fold (handles f folder) > L.foldOver folded == L.fold -} foldOver :: Handler s a -> Fold a b -> s -> b foldOver l (Fold step begin done) = done . flip appEndo begin . getDual . getConst . l (Const . Dual . Endo . flip step) {-# INLINABLE foldOver #-} {-| > instance Monad m => Monoid (EndoM m a) where > mempty = EndoM return > mappend (EndoM f) (EndoM g) = EndoM (f <=< g) -} newtype EndoM m a = EndoM { appEndoM :: a -> m a } instance Monad m => Semigroup (EndoM m a) where (EndoM f) <> (EndoM g) = EndoM (f <=< g) {-# INLINE (<>) #-} instance Monad m => Monoid (EndoM m a) where mempty = EndoM return {-# INLINE mempty #-} mappend = (<>) {-# INLINE mappend #-} {-| A Handler for the upstream input of `FoldM` Any lens, traversal, or prism will type-check as a `HandlerM` -} type HandlerM m a b = forall x . (b -> Const (Dual (EndoM m x)) b) -> a -> Const (Dual (EndoM m x)) a {-| @(handlesM t folder)@ transforms the input of a `FoldM` using a lens, traversal, or prism: > handlesM _1 :: FoldM m a r -> FoldM (a, b) r > handlesM _Left :: FoldM m a r -> FoldM (Either a b) r > handlesM traverse :: Traversable t => FoldM m a r -> FoldM m (t a) r > handlesM folded :: Foldable t => FoldM m a r -> FoldM m (t a) r `handlesM` obeys these laws: > handlesM id = id > > handlesM (f . g) = handlesM f . handlesM g > handlesM t (pure r) = pure r > > handlesM t (f <*> x) = handlesM t f <*> handlesM t x -} handlesM :: HandlerM m a b -> FoldM m b r -> FoldM m a r handlesM k (FoldM step begin done) = FoldM step' begin done where step' = flip (appEndoM . getDual . getConst . k (Const . Dual . EndoM . flip step)) {-# INLINABLE handlesM #-} {- | @(foldOverM f folder xs)@ folds all values from a Lens, Traversal, Prism or Fold monadically with the given folder > L.foldOverM (folded.f) folder == L.foldM (handlesM f folder) > L.foldOverM folded == L.foldM -} foldOverM :: Monad m => HandlerM m s a -> FoldM m a b -> s -> m b foldOverM l (FoldM step begin done) s = do b <- begin r <- (flip appEndoM b . getDual . getConst . l (Const . Dual . EndoM . flip step)) s done r {-# INLINABLE foldOverM #-} {-| > folded :: Foldable t => Fold (t a) a > > handles folded :: Foldable t => Fold a r -> Fold (t a) r -} folded :: (Contravariant f, Applicative f, Foldable t) => (a -> f a) -> (t a -> f (t a)) folded k ts = contramap (\_ -> ()) (F.traverse_ k ts) {-# INLINABLE folded #-} {-| >>> fold (handles (filtered even) sum) [1..10] 30 >>> foldM (handlesM (filtered even) (mapM_ print)) [1..10] 2 4 6 8 10 -} filtered :: Monoid m => (a -> Bool) -> (a -> m) -> a -> m filtered p k x | p x = k x | otherwise = mempty {-# INLINABLE filtered #-} {-| Perform a 'Fold' while grouping the data according to a specified group projection function. Returns the folded result grouped as a map keyed by the group. -} groupBy :: Ord g => (a -> g) -> Fold a r -> Fold a (Map g r) groupBy grouper (Fold f i e) = Fold f' mempty (fmap e) where f' !m !a = alter (\o -> Just (f (fromMaybe i o) a)) (grouper a) m {-# INLINABLE groupBy #-} {- $reexports @Control.Monad.Primitive@ re-exports the 'PrimMonad' type class @Data.Foldable@ re-exports the 'Foldable' type class @Data.Vector.Generic@ re-exports the 'Vector' type class -}