{-# LANGUAGE MagicHash #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE ViewPatterns #-} module Foundation.Primitive.UArray.Base ( MUArray(..) , UArray(..) , MUArrayBackend(..) , UArrayBackend(..) -- * New mutable array creation , newUnpinned , newPinned , newNative , new -- * Pinning status , isPinned , isMutablePinned -- * Mutable array accessor , unsafeRead , unsafeWrite -- * Freezing routines , unsafeFreezeShrink , unsafeFreeze , unsafeThaw -- * Array accessor , unsafeIndex , unsafeIndexer , onBackend , onBackendPrim , onMutableBackend , unsafeDewrap , unsafeDewrap2 -- * Basic lowlevel functions , empty , length , offset , ValidRange(..) , offsetsValidRange , equal , equalMemcmp , compare , copyAt , unsafeCopyAtRO , touch -- * temporary , pureST ) where import GHC.Prim import GHC.Types import GHC.Ptr import GHC.ST import Foundation.Internal.Primitive import Foundation.Primitive.Monad import Foundation.Primitive.Types import Foundation.Internal.Base import qualified Foundation.Primitive.Runtime as Runtime import Foundation.Internal.Proxy import qualified Foundation.Boot.List as List import Foundation.Primitive.Types.OffsetSize import Foundation.Primitive.FinalPtr import Foundation.Primitive.NormalForm import Foundation.Primitive.Block (MutableBlock(..), Block(..)) import qualified Foundation.Primitive.Block as BLK import qualified Foundation.Primitive.Block.Base as BLK (touch) import qualified Foundation.Primitive.Block.Mutable as MBLK import Foundation.Numerical import Foundation.System.Bindings.Hs import Foreign.C.Types import System.IO.Unsafe (unsafeDupablePerformIO) -- | A Mutable array of types built on top of GHC primitive. -- -- Element in this array can be modified in place. data MUArray ty st = MUArray {-# UNPACK #-} !(Offset ty) {-# UNPACK #-} !(CountOf ty) !(MUArrayBackend ty st) data MUArrayBackend ty st = MUArrayMBA (MutableBlock ty st) | MUArrayAddr (FinalPtr ty) -- | An array of type built on top of GHC primitive. -- -- The elements need to have fixed sized and the representation is a -- packed contiguous array in memory that can easily be passed -- to foreign interface data UArray ty = UArray {-# UNPACK #-} !(Offset ty) {-# UNPACK #-} !(CountOf ty) !(UArrayBackend ty) deriving (Typeable) data UArrayBackend ty = UArrayBA !(Block ty) | UArrayAddr !(FinalPtr ty) deriving (Typeable) instance Data ty => Data (UArray ty) where dataTypeOf _ = arrayType toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" arrayType :: DataType arrayType = mkNoRepType "Foundation.UArray" instance NormalForm (UArray ty) where toNormalForm (UArray _ _ !_) = () instance (PrimType ty, Show ty) => Show (UArray ty) where show v = show (toList v) instance (PrimType ty, Eq ty) => Eq (UArray ty) where (==) = equal instance (PrimType ty, Ord ty) => Ord (UArray ty) where {-# SPECIALIZE instance Ord (UArray Word8) #-} compare = vCompare instance PrimType ty => Monoid (UArray ty) where mempty = empty mappend = append mconcat = concat instance PrimType ty => IsList (UArray ty) where type Item (UArray ty) = ty fromList = vFromList toList = vToList length :: UArray ty -> CountOf ty length (UArray _ len _) = len {-# INLINE[1] length #-} offset :: UArray ty -> Offset ty offset (UArray ofs _ _) = ofs {-# INLINE[1] offset #-} data ValidRange ty = ValidRange {-# UNPACK #-} !(Offset ty) {-# UNPACK #-} !(Offset ty) offsetsValidRange :: UArray ty -> ValidRange ty offsetsValidRange (UArray ofs len _) = ValidRange ofs (ofs `offsetPlusE` len) -- | Return if the array is pinned in memory -- -- note that Foreign array are considered pinned isPinned :: UArray ty -> PinnedStatus isPinned (UArray _ _ (UArrayAddr {})) = Pinned isPinned (UArray _ _ (UArrayBA blk)) = BLK.isPinned blk -- | Return if a mutable array is pinned in memory isMutablePinned :: MUArray ty st -> PinnedStatus isMutablePinned (MUArray _ _ (MUArrayAddr {})) = Pinned isMutablePinned (MUArray _ _ (MUArrayMBA mb)) = BLK.isMutablePinned mb -- | Create a new pinned mutable array of size @n. -- -- all the cells are uninitialized and could contains invalid values. -- -- All mutable arrays are allocated on a 64 bits aligned addresses newPinned :: forall prim ty . (PrimMonad prim, PrimType ty) => CountOf ty -> prim (MUArray ty (PrimState prim)) newPinned n = MUArray 0 n . MUArrayMBA <$> MBLK.newPinned n newUnpinned :: forall prim ty . (PrimMonad prim, PrimType ty) => CountOf ty -> prim (MUArray ty (PrimState prim)) newUnpinned n = MUArray 0 n . MUArrayMBA <$> MBLK.new n newNative :: (PrimMonad prim, PrimType ty) => CountOf ty -> (MutableByteArray# (PrimState prim) -> prim a) -- ^ move to a MutableBlock -> prim (a, MUArray ty (PrimState prim)) newNative n f = do mb@(MutableBlock mba) <- MBLK.new n a <- f mba pure (a, MUArray 0 n (MUArrayMBA mb)) -- | Create a new mutable array of size @n. -- -- When memory for a new array is allocated, we decide if that memory region -- should be pinned (will not be copied around by GC) or unpinned (can be -- moved around by GC) depending on its size. -- -- You can change the threshold value used by setting the environment variable -- @HS_FOUNDATION_UARRAY_UNPINNED_MAX@. new :: (PrimMonad prim, PrimType ty) => CountOf ty -> prim (MUArray ty (PrimState prim)) new sz | sizeRecast sz <= maxSizeUnpinned = newUnpinned sz | otherwise = newPinned sz where -- Safe to use here: If the value changes during runtime, this will only -- have an impact on newly created arrays. maxSizeUnpinned = Runtime.unsafeUArrayUnpinnedMaxSize {-# INLINE new #-} -- | read from a cell in a mutable array without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'read' if unsure. unsafeRead :: (PrimMonad prim, PrimType ty) => MUArray ty (PrimState prim) -> Offset ty -> prim ty unsafeRead (MUArray start _ (MUArrayMBA (MutableBlock mba))) i = primMbaRead mba (start + i) unsafeRead (MUArray start _ (MUArrayAddr fptr)) i = withFinalPtr fptr $ \(Ptr addr) -> primAddrRead addr (start + i) {-# INLINE unsafeRead #-} -- | write to a cell in a mutable array without bounds checking. -- -- Writing with invalid bounds will corrupt memory and your program will -- become unreliable. use 'write' if unsure. unsafeWrite :: (PrimMonad prim, PrimType ty) => MUArray ty (PrimState prim) -> Offset ty -> ty -> prim () unsafeWrite (MUArray start _ (MUArrayMBA mb)) i v = MBLK.unsafeWrite mb (start+i) v unsafeWrite (MUArray start _ (MUArrayAddr fptr)) i v = withFinalPtr fptr $ \(Ptr addr) -> primAddrWrite addr (start+i) v {-# INLINE unsafeWrite #-} -- | Return the element at a specific index from an array without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'index' if unsure. unsafeIndex :: forall ty . PrimType ty => UArray ty -> Offset ty -> ty unsafeIndex (UArray start _ (UArrayBA ba)) n = BLK.unsafeIndex ba (start + n) unsafeIndex (UArray start _ (UArrayAddr fptr)) n = withUnsafeFinalPtr fptr (\(Ptr addr) -> return (primAddrIndex addr (start+n)) :: IO ty) {-# INLINE unsafeIndex #-} unsafeIndexer :: (PrimMonad prim, PrimType ty) => UArray ty -> ((Offset ty -> ty) -> prim a) -> prim a unsafeIndexer (UArray start _ (UArrayBA ba)) f = f (\n -> BLK.unsafeIndex ba (start + n)) unsafeIndexer (UArray start _ (UArrayAddr fptr)) f = withFinalPtr fptr $ \(Ptr addr) -> f (\n -> primAddrIndex addr (start + n)) {-# INLINE unsafeIndexer #-} -- | Freeze a mutable array into an array. -- -- the MUArray must not be changed after freezing. unsafeFreeze :: PrimMonad prim => MUArray ty (PrimState prim) -> prim (UArray ty) unsafeFreeze (MUArray start len (MUArrayMBA mba)) = UArray start len . UArrayBA <$> MBLK.unsafeFreeze mba unsafeFreeze (MUArray start len (MUArrayAddr fptr)) = pure $ UArray start len (UArrayAddr fptr) {-# INLINE unsafeFreeze #-} unsafeFreezeShrink :: (PrimType ty, PrimMonad prim) => MUArray ty (PrimState prim) -> CountOf ty -> prim (UArray ty) unsafeFreezeShrink (MUArray start _ backend) n = unsafeFreeze (MUArray start n backend) {-# INLINE unsafeFreezeShrink #-} -- | Thaw an immutable array. -- -- The UArray must not be used after thawing. unsafeThaw :: (PrimType ty, PrimMonad prim) => UArray ty -> prim (MUArray ty (PrimState prim)) unsafeThaw (UArray start len (UArrayBA blk)) = MUArray start len . MUArrayMBA <$> BLK.unsafeThaw blk unsafeThaw (UArray start len (UArrayAddr fptr)) = pure $ MUArray start len (MUArrayAddr fptr) {-# INLINE unsafeThaw #-} onBackend :: (ByteArray# -> a) -> (FinalPtr ty -> Ptr ty -> ST s a) -> UArray ty -> a onBackend onBa _ (UArray _ _ (UArrayBA (Block ba))) = onBa ba onBackend _ onAddr (UArray _ _ (UArrayAddr fptr)) = withUnsafeFinalPtr fptr (onAddr fptr) {-# INLINE onBackend #-} onBackendPrim :: PrimMonad prim => (ByteArray# -> prim a) -> (FinalPtr ty -> prim a) -> UArray ty -> prim a onBackendPrim onBa _ (UArray _ _ (UArrayBA (Block ba))) = onBa ba onBackendPrim _ onAddr (UArray _ _ (UArrayAddr fptr)) = onAddr fptr {-# INLINE onBackendPrim #-} onMutableBackend :: PrimMonad prim => (MutableByteArray# (PrimState prim) -> prim a) -> (FinalPtr ty -> prim a) -> MUArray ty (PrimState prim) -> prim a onMutableBackend onMba _ (MUArray _ _ (MUArrayMBA (MutableBlock mba))) = onMba mba onMutableBackend _ onAddr (MUArray _ _ (MUArrayAddr fptr)) = onAddr fptr {-# INLINE onMutableBackend #-} unsafeDewrap :: (ByteArray# -> Offset ty -> a) -> (Ptr ty -> Offset ty -> ST s a) -> UArray ty -> a unsafeDewrap _ g (UArray start _ (UArrayAddr fptr)) = withUnsafeFinalPtr fptr $ \ptr -> g ptr start unsafeDewrap f _ (UArray start _ (UArrayBA (Block ba))) = f ba start {-# INLINE unsafeDewrap #-} unsafeDewrap2 :: (ByteArray# -> ByteArray# -> a) -> (Ptr ty -> Ptr ty -> ST s a) -> (ByteArray# -> Ptr ty -> ST s a) -> (Ptr ty -> ByteArray# -> ST s a) -> UArray ty -> UArray ty -> a unsafeDewrap2 f g h i (UArray _ _ back1) (UArray _ _ back2) = case (back1, back2) of (UArrayBA (Block ba1), UArrayBA (Block ba2)) -> f ba1 ba2 (UArrayAddr fptr1, UArrayAddr fptr2) -> withUnsafeFinalPtr fptr1 $ \ptr1 -> withFinalPtr fptr2 $ \ptr2 -> g ptr1 ptr2 (UArrayBA (Block ba1), UArrayAddr fptr2) -> withUnsafeFinalPtr fptr2 $ \ptr2 -> h ba1 ptr2 (UArrayAddr fptr1, UArrayBA (Block ba2)) -> withUnsafeFinalPtr fptr1 $ \ptr1 -> i ptr1 ba2 {-# INLINE [2] unsafeDewrap2 #-} pureST :: a -> ST s a pureST = pure -- | make an array from a list of elements. vFromList :: PrimType ty => [ty] -> UArray ty vFromList l = runST $ do ma <- new (CountOf len) iter azero l $ \i x -> unsafeWrite ma i x unsafeFreeze ma where len = List.length l iter _ [] _ = return () iter !i (x:xs) z = z i x >> iter (i+1) xs z -- | transform an array to a list. vToList :: forall ty . PrimType ty => UArray ty -> [ty] vToList a | len == 0 = [] | otherwise = unsafeDewrap goBa goPtr a where !len = length a goBa ba start = loop start where !end = start `offsetPlusE` len loop !i | i == end = [] | otherwise = primBaIndex ba i : loop (i+1) goPtr (Ptr addr) start = pureST (loop start) where !end = start `offsetPlusE` len loop !i | i == end = [] | otherwise = primAddrIndex addr i : loop (i+1) -- | Check if two vectors are identical equal :: (PrimType ty, Eq ty) => UArray ty -> UArray ty -> Bool equal a b | la /= lb = False | otherwise = unsafeDewrap2 goBaBa goPtrPtr goBaPtr goPtrBa a b where !start1 = offset a !start2 = offset b !end = start1 `offsetPlusE` la !la = length a !lb = length b goBaBa ba1 ba2 = loop start1 start2 where loop !i !o | i == end = True | otherwise = primBaIndex ba1 i == primBaIndex ba2 o && loop (i+o1) (o+o1) goPtrPtr (Ptr addr1) (Ptr addr2) = pureST (loop start1 start2) where loop !i !o | i == end = True | otherwise = primAddrIndex addr1 i == primAddrIndex addr2 o && loop (i+o1) (o+o1) goBaPtr ba1 (Ptr addr2) = pureST (loop start1 start2) where loop !i !o | i == end = True | otherwise = primBaIndex ba1 i == primAddrIndex addr2 o && loop (i+o1) (o+o1) goPtrBa (Ptr addr1) ba2 = pureST (loop start1 start2) where loop !i !o | i == end = True | otherwise = primAddrIndex addr1 i == primBaIndex ba2 o && loop (i+o1) (o+o1) o1 = Offset (I# 1#) {-# RULES "UArray/Eq/Word8" [3] equal = equalBytes #-} {-# INLINEABLE [2] equal #-} equalBytes :: UArray Word8 -> UArray Word8 -> Bool equalBytes a b | la /= lb = False | otherwise = memcmp a b (sizeInBytes la) == 0 where !la = length a !lb = length b equalMemcmp :: PrimType ty => UArray ty -> UArray ty -> Bool equalMemcmp a b | la /= lb = False | otherwise = memcmp a b (sizeInBytes la) == 0 where !la = length a !lb = length b -- | Compare 2 vectors vCompare :: (Ord ty, PrimType ty) => UArray ty -> UArray ty -> Ordering vCompare a@(UArray start1 la _) b@(UArray start2 lb _) = unsafeDewrap2 goBaBa goPtrPtr goBaPtr goPtrBa a b where !end = start1 `offsetPlusE` min la lb o1 = Offset (I# 1#) goBaBa ba1 ba2 = loop start1 start2 where loop !i !o | i == end = la `compare` lb | v1 == v2 = loop (i + o1) (o + o1) | otherwise = v1 `compare` v2 where v1 = primBaIndex ba1 i v2 = primBaIndex ba2 o goPtrPtr (Ptr addr1) (Ptr addr2) = pureST (loop start1 start2) where loop !i !o | i == end = la `compare` lb | v1 == v2 = loop (i + o1) (o + o1) | otherwise = v1 `compare` v2 where v1 = primAddrIndex addr1 i v2 = primAddrIndex addr2 o goBaPtr ba1 (Ptr addr2) = pureST (loop start1 start2) where loop !i !o | i == end = la `compare` lb | v1 == v2 = loop (i + o1) (o + o1) | otherwise = v1 `compare` v2 where v1 = primBaIndex ba1 i v2 = primAddrIndex addr2 o goPtrBa (Ptr addr1) ba2 = pureST (loop start1 start2) where loop !i !o | i == end = la `compare` lb | v1 == v2 = loop (i + o1) (o + o1) | otherwise = v1 `compare` v2 where v1 = primAddrIndex addr1 i v2 = primBaIndex ba2 o -- {-# SPECIALIZE [3] vCompare :: UArray Word8 -> UArray Word8 -> Ordering = vCompareBytes #-} {-# RULES "UArray/Ord/Word8" [3] vCompare = vCompareBytes #-} {-# INLINEABLE [2] vCompare #-} vCompareBytes :: UArray Word8 -> UArray Word8 -> Ordering vCompareBytes = vCompareMemcmp vCompareMemcmp :: (Ord ty, PrimType ty) => UArray ty -> UArray ty -> Ordering vCompareMemcmp a b = cintToOrdering $ memcmp a b sz where la = length a lb = length b sz = sizeInBytes $ min la lb cintToOrdering :: CInt -> Ordering cintToOrdering 0 = la `compare` lb cintToOrdering r | r < 0 = LT | otherwise = GT {-# SPECIALIZE [3] vCompareMemcmp :: UArray Word8 -> UArray Word8 -> Ordering #-} memcmp :: PrimType ty => UArray ty -> UArray ty -> CountOf Word8 -> CInt memcmp a@(UArray (offsetInBytes -> o1) _ _) b@(UArray (offsetInBytes -> o2) _ _) sz = unsafeDewrap2 (\s1 s2 -> unsafeDupablePerformIO $ sysHsMemcmpBaBa s1 o1 s2 o2 sz) (\s1 s2 -> unsafePrimToST $ sysHsMemcmpPtrPtr s1 o1 s2 o2 sz) (\s1 s2 -> unsafePrimToST $ sysHsMemcmpBaPtr s1 o1 s2 o2 sz) (\s1 s2 -> unsafePrimToST $ sysHsMemcmpPtrBa s1 o1 s2 o2 sz) a b {-# SPECIALIZE [3] memcmp :: UArray Word8 -> UArray Word8 -> CountOf Word8 -> CInt #-} -- | Copy a number of elements from an array to another array with offsets copyAt :: forall prim ty . (PrimMonad prim, PrimType ty) => MUArray ty (PrimState prim) -- ^ destination array -> Offset ty -- ^ offset at destination -> MUArray ty (PrimState prim) -- ^ source array -> Offset ty -- ^ offset at source -> CountOf ty -- ^ number of elements to copy -> prim () copyAt (MUArray dstStart _ (MUArrayMBA (MutableBlock dstMba))) ed (MUArray srcStart _ (MUArrayMBA (MutableBlock srcBa))) es n = primitive $ \st -> (# copyMutableByteArray# srcBa os dstMba od nBytes st, () #) where !sz = primSizeInBytes (Proxy :: Proxy ty) !(Offset (I# os)) = offsetOfE sz (srcStart + es) !(Offset (I# od)) = offsetOfE sz (dstStart + ed) !(CountOf (I# nBytes)) = sizeOfE sz n copyAt (MUArray dstStart _ (MUArrayMBA (MutableBlock dstMba))) ed (MUArray srcStart _ (MUArrayAddr srcFptr)) es n = withFinalPtr srcFptr $ \srcPtr -> let !(Ptr srcAddr) = srcPtr `plusPtr` os in primitive $ \s -> (# compatCopyAddrToByteArray# srcAddr dstMba od nBytes s, () #) where !sz = primSizeInBytes (Proxy :: Proxy ty) !(Offset os) = offsetOfE sz (srcStart + es) !(Offset (I# od)) = offsetOfE sz (dstStart + ed) !(CountOf (I# nBytes)) = sizeOfE sz n copyAt dst od src os n = loop od os where !endIndex = os `offsetPlusE` n loop !d !i | i == endIndex = return () | otherwise = unsafeRead src i >>= unsafeWrite dst d >> loop (d+1) (i+1) -- TODO Optimise with copyByteArray# -- | Copy @n@ sequential elements from the specified offset in a source array -- to the specified position in a destination array. -- -- This function does not check bounds. Accessing invalid memory can return -- unpredictable and invalid values. unsafeCopyAtRO :: forall prim ty . (PrimMonad prim, PrimType ty) => MUArray ty (PrimState prim) -- ^ destination array -> Offset ty -- ^ offset at destination -> UArray ty -- ^ source array -> Offset ty -- ^ offset at source -> CountOf ty -- ^ number of elements to copy -> prim () unsafeCopyAtRO (MUArray dstStart _ (MUArrayMBA (MutableBlock dstMba))) ed (UArray srcStart _ (UArrayBA (Block srcBa))) es n = primitive $ \st -> (# copyByteArray# srcBa os dstMba od nBytes st, () #) where sz = primSizeInBytes (Proxy :: Proxy ty) !(Offset (I# os)) = offsetOfE sz (srcStart+es) !(Offset (I# od)) = offsetOfE sz (dstStart+ed) !(CountOf (I# nBytes)) = sizeOfE sz n unsafeCopyAtRO (MUArray dstStart _ (MUArrayMBA (MutableBlock dstMba))) ed (UArray srcStart _ (UArrayAddr srcFptr)) es n = withFinalPtr srcFptr $ \srcPtr -> let !(Ptr srcAddr) = srcPtr `plusPtr` os in primitive $ \s -> (# compatCopyAddrToByteArray# srcAddr dstMba od nBytes s, () #) where sz = primSizeInBytes (Proxy :: Proxy ty) !(Offset os) = offsetOfE sz (srcStart+es) !(Offset (I# od)) = offsetOfE sz (dstStart+ed) !(CountOf (I# nBytes)) = sizeOfE sz n unsafeCopyAtRO dst od src os n = loop od os where !endIndex = os `offsetPlusE` n loop d i | i == endIndex = return () | otherwise = unsafeWrite dst d (unsafeIndex src i) >> loop (d+1) (i+1) empty_ :: Block () empty_ = runST $ primitive $ \s1 -> case newByteArray# 0# s1 of { (# s2, mba #) -> case unsafeFreezeByteArray# mba s2 of { (# s3, ba #) -> (# s3, Block ba #) }} empty :: UArray ty empty = UArray 0 0 (UArrayBA $ Block ba) where !(Block ba) = empty_ -- | Append 2 arrays together by creating a new bigger array append :: PrimType ty => UArray ty -> UArray ty -> UArray ty append a b | la == azero = b | lb == azero = a | otherwise = runST $ do r <- new (la+lb) ma <- unsafeThaw a mb <- unsafeThaw b copyAt r (Offset 0) ma (Offset 0) la copyAt r (sizeAsOffset la) mb (Offset 0) lb unsafeFreeze r where !la = length a !lb = length b concat :: PrimType ty => [UArray ty] -> UArray ty concat [] = empty concat l = case filterAndSum (CountOf 0) [] l of (_,[]) -> empty (_,[x]) -> x (totalLen,chunks) -> runST $ do r <- new totalLen doCopy r (Offset 0) chunks unsafeFreeze r where -- TODO would go faster not to reverse but pack from the end instead filterAndSum !totalLen acc [] = (totalLen, List.reverse acc) filterAndSum !totalLen acc (x:xs) | len == CountOf 0 = filterAndSum totalLen acc xs | otherwise = filterAndSum (len+totalLen) (x:acc) xs where len = length x doCopy _ _ [] = return () doCopy r i (x:xs) = do unsafeCopyAtRO r i x (Offset 0) lx doCopy r (i `offsetPlusE` lx) xs where lx = length x touch :: PrimMonad prim => UArray ty -> prim () touch (UArray _ _ (UArrayBA blk)) = BLK.touch blk touch (UArray _ _ (UArrayAddr fptr)) = touchFinalPtr fptr