-- | -- Module : Foundation.Array.Unboxed -- License : BSD-style -- Maintainer : Vincent Hanquez -- Stability : experimental -- Portability : portable -- -- A simple array abstraction that allow to use typed -- array of bytes where the array is pinned in memory -- to allow easy use with Foreign interfaces, ByteString -- and always aligned to 64 bytes. -- {-# LANGUAGE MagicHash #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ViewPatterns #-} module Foundation.Array.Unboxed ( UArray(..) , PrimType(..) -- * methods , copy , unsafeCopyAtRO -- * internal methods -- , copyAddr , recast , unsafeRecast , length , lengthSize , freeze , unsafeFreeze , thaw , unsafeThaw -- * Creation , new , empty , create , createFromIO , sub , withPtr , withMutablePtr , unsafeFreezeShrink , freezeShrink , unsafeSlide -- * accessors , update , unsafeUpdate , unsafeIndex , unsafeIndexer , unsafeDewrap , unsafeRead , unsafeWrite -- * Functions , map , mapIndex , findIndex , index , null , take , drop , splitAt , revDrop , revTake , revSplitAt , splitOn , splitElem , break , breakElem , elem , intersperse , span , cons , snoc , uncons , unsnoc , find , sortBy , filter , reverse , foldl , foldr , foldl' , foreignMem , fromForeignPtr , builderAppend , builderBuild , toHexadecimal ) where import GHC.Prim import GHC.Types import GHC.Word import GHC.ST import GHC.Ptr import GHC.ForeignPtr (ForeignPtr) import qualified Prelude import Foundation.Internal.Base import Foundation.Internal.Primitive import Foundation.Internal.Proxy import Foundation.Internal.Types import Foundation.Internal.MonadTrans import qualified Foundation.Primitive.Base16 as Base16 import Foundation.Primitive.Monad import Foundation.Primitive.Types import Foundation.Primitive.FinalPtr import Foundation.Primitive.Utils import Foundation.Array.Common import Foundation.Array.Unboxed.Mutable hiding (sub) import Foundation.Numerical import Foundation.Boot.Builder import qualified Data.List -- | An array of type built on top of GHC primitive. -- -- The elements need to have fixed sized and the representation is a -- packed contiguous array in memory that can easily be passed -- to foreign interface data UArray ty = UVecBA {-# UNPACK #-} !(Offset ty) {-# UNPACK #-} !(Size ty) {-# UNPACK #-} !PinnedStatus {- unpinned / pinned flag -} ByteArray# | UVecAddr {-# UNPACK #-} !(Offset ty) {-# UNPACK #-} !(Size ty) !(FinalPtr ty) deriving (Typeable) instance Data ty => Data (UArray ty) where dataTypeOf _ = arrayType toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" arrayType :: DataType arrayType = mkNoRepType "Foundation.UArray" instance (PrimType ty, Show ty) => Show (UArray ty) where show v = show (toList v) instance (PrimType ty, Eq ty) => Eq (UArray ty) where (==) = equal instance (PrimType ty, Ord ty) => Ord (UArray ty) where compare = vCompare instance PrimType ty => Monoid (UArray ty) where mempty = empty mappend = append mconcat = concat instance PrimType ty => IsList (UArray ty) where type Item (UArray ty) = ty fromList = vFromList toList = vToList vectorProxyTy :: UArray ty -> Proxy ty vectorProxyTy _ = Proxy -- | Copy every cells of an existing array to a new array copy :: PrimType ty => UArray ty -> UArray ty copy array = runST (thaw array >>= unsafeFreeze) -- | Thaw an array to a mutable array. -- -- the array is not modified, instead a new mutable array is created -- and every values is copied, before returning the mutable array. thaw :: (PrimMonad prim, PrimType ty) => UArray ty -> prim (MUArray ty (PrimState prim)) thaw array = do ma <- new (lengthSize array) unsafeCopyAtRO ma azero array (Offset 0) (lengthSize array) return ma {-# INLINE thaw #-} -- | Return the element at a specific index from an array. -- -- If the index @n is out of bounds, an error is raised. index :: PrimType ty => UArray ty -> Int -> ty index array n | n < 0 || n >= len = throw (OutOfBound OOB_Index n len) | otherwise = unsafeIndex array n where len = length array {-# INLINE index #-} -- | Return the element at a specific index from an array without bounds checking. -- -- Reading from invalid memory can return unpredictable and invalid values. -- use 'index' if unsure. unsafeIndex :: PrimType ty => UArray ty -> Int -> ty unsafeIndex (UVecBA start _ _ ba) n = primBaIndex ba (start + Offset n) unsafeIndex v@(UVecAddr start _ fptr) n = withUnsafeFinalPtr fptr (primAddrIndex' v start) where primAddrIndex' :: PrimType ty => UArray ty -> Offset ty -> Ptr a -> IO ty primAddrIndex' _ start' (Ptr addr) = return (primAddrIndex addr (start' + Offset n)) {-# INLINE unsafeIndex #-} unsafeIndexer :: (PrimMonad prim, PrimType ty) => UArray ty -> ((Offset ty -> ty) -> prim a) -> prim a unsafeIndexer (UVecBA start _ _ ba) f = f (\n -> primBaIndex ba (start + n)) unsafeIndexer (UVecAddr start _ fptr) f = withFinalPtr fptr (\ptr -> f (primAddrIndex' start ptr)) where primAddrIndex' :: PrimType ty => Offset ty -> Ptr a -> (Offset ty -> ty) primAddrIndex' start' (Ptr addr) = \n -> primAddrIndex addr (start' + n) {-# INLINE primAddrIndex' #-} {-# NOINLINE unsafeIndexer #-} unsafeDewrap :: PrimType ty => (ByteArray# -> Offset ty -> a) -> (Ptr ty -> Offset ty -> ST s a) -> UArray ty -> a unsafeDewrap _ g (UVecAddr start _ fptr) = withUnsafeFinalPtr fptr $ \ptr -> g ptr start unsafeDewrap f _ (UVecBA start _ _ ba) = f ba start {-# INLINE unsafeDewrap #-} foreignMem :: PrimType ty => FinalPtr ty -- ^ the start pointer with a finalizer -> Int -- ^ the number of elements (in elements, not bytes) -> UArray ty foreignMem fptr nb = UVecAddr (Offset 0) (Size nb) fptr fromForeignPtr :: PrimType ty => (ForeignPtr ty, Int, Int) -- ForeignPtr, an offset in prim elements, a size in prim elements -> UArray ty fromForeignPtr (fptr, ofs, len) = UVecAddr (Offset ofs) (Size len) (toFinalPtrForeign fptr) -- | return the number of elements of the array. length :: PrimType ty => UArray ty -> Int length a = let (Size len) = lengthSize a in len {-# INLINE[1] length #-} lengthSize :: PrimType ty => UArray ty -> Size ty lengthSize (UVecAddr _ len _) = len lengthSize (UVecBA _ len _ _) = len {-# INLINE[1] lengthSize #-} -- TODO Optimise with copyByteArray# -- | Copy @n@ sequential elements from the specified offset in a source array -- to the specified position in a destination array. -- -- This function does not check bounds. Accessing invalid memory can return -- unpredictable and invalid values. unsafeCopyAtRO :: (PrimMonad prim, PrimType ty) => MUArray ty (PrimState prim) -- ^ destination array -> Offset ty -- ^ offset at destination -> UArray ty -- ^ source array -> Offset ty -- ^ offset at source -> Size ty -- ^ number of elements to copy -> prim () unsafeCopyAtRO (MUVecMA dstStart _ _ dstMba) ed uvec@(UVecBA srcStart _ _ srcBa) es n = primitive $ \st -> (# copyByteArray# srcBa os dstMba od nBytes st, () #) where sz = primSizeInBytes (vectorProxyTy uvec) !(Offset (I# os)) = offsetOfE sz (srcStart+es) !(Offset (I# od)) = offsetOfE sz (dstStart+ed) !(Size (I# nBytes)) = sizeOfE sz n unsafeCopyAtRO (MUVecMA dstStart _ _ dstMba) ed uvec@(UVecAddr srcStart _ srcFptr) es n = withFinalPtr srcFptr $ \srcPtr -> let !(Ptr srcAddr) = srcPtr `plusPtr` os in primitive $ \s -> (# compatCopyAddrToByteArray# srcAddr dstMba od nBytes s, () #) where sz = primSizeInBytes (vectorProxyTy uvec) !(Offset os) = offsetOfE sz (srcStart+es) !(Offset (I# od)) = offsetOfE sz (dstStart+ed) !(Size (I# nBytes)) = sizeOfE sz n unsafeCopyAtRO dst od src os n = loop od os where !(Offset endIndex) = os `offsetPlusE` n loop (Offset d) (Offset i) | i == endIndex = return () | otherwise = unsafeWrite dst d (unsafeIndex src i) >> loop (Offset $ d+1) (Offset $ i+1) -- | Allocate a new array with a fill function that has access to the elements of -- the source array. unsafeCopyFrom :: PrimType ty => UArray ty -- ^ Source array -> Int -- ^ Length of the destination array -> (UArray ty -> Int -> MUArray ty s -> ST s ()) -- ^ Function called for each element in the source array -> ST s (UArray ty) -- ^ Returns the filled new array unsafeCopyFrom v' newLen f = new (Size newLen) >>= fill 0 f >>= unsafeFreeze where len = length v' fill i f' r' | i == len = return r' | otherwise = do f' v' i r' fill (i + 1) f' r' -- | Freeze a mutable array into an array. -- -- the MUArray must not be changed after freezing. unsafeFreeze :: PrimMonad prim => MUArray ty (PrimState prim) -> prim (UArray ty) unsafeFreeze (MUVecMA start len pinnedState mba) = primitive $ \s1 -> case unsafeFreezeByteArray# mba s1 of (# s2, ba #) -> (# s2, UVecBA start len pinnedState ba #) unsafeFreeze (MUVecAddr start len fptr) = return $ UVecAddr start len fptr {-# INLINE unsafeFreeze #-} unsafeFreezeShrink :: (PrimType ty, PrimMonad prim) => MUArray ty (PrimState prim) -> Size ty -> prim (UArray ty) unsafeFreezeShrink (MUVecMA start _ pinnedState mba) n = unsafeFreeze (MUVecMA start n pinnedState mba) unsafeFreezeShrink (MUVecAddr start _ fptr) n = unsafeFreeze (MUVecAddr start n fptr) {-# INLINE unsafeFreezeShrink #-} freeze :: (PrimType ty, PrimMonad prim) => MUArray ty (PrimState prim) -> prim (UArray ty) freeze ma = do ma' <- new len copyAt ma' (Offset 0) ma (Offset 0) len unsafeFreeze ma' where len = Size $ mutableLength ma freezeShrink :: (PrimType ty, PrimMonad prim) => MUArray ty (PrimState prim) -> Int -> prim (UArray ty) freezeShrink ma n = do ma' <- new (Size n) copyAt ma' (Offset 0) ma (Offset 0) (Size n) unsafeFreeze ma' unsafeSlide :: (PrimType ty, PrimMonad prim) => MUArray ty (PrimState prim) -> Int -> Int -> prim () unsafeSlide mua s e = doSlide mua (Offset s) (Offset e) where doSlide :: (PrimType ty, PrimMonad prim) => MUArray ty (PrimState prim) -> Offset ty -> Offset ty -> prim () doSlide (MUVecMA mbStart _ _ mba) start end = primMutableByteArraySlideToStart mba (primOffsetOfE $ mbStart+start) (primOffsetOfE end) doSlide (MUVecAddr mbStart _ fptr) start end = withFinalPtr fptr $ \(Ptr addr) -> primMutableAddrSlideToStart addr (primOffsetOfE $ mbStart+start) (primOffsetOfE end) -- | Thaw an immutable array. -- -- The UArray must not be used after thawing. unsafeThaw :: (PrimType ty, PrimMonad prim) => UArray ty -> prim (MUArray ty (PrimState prim)) unsafeThaw (UVecBA start len pinnedState ba) = primitive $ \st -> (# st, MUVecMA start len pinnedState (unsafeCoerce# ba) #) unsafeThaw (UVecAddr start len fptr) = return $ MUVecAddr start len fptr {-# INLINE unsafeThaw #-} -- | Create a new array of size @n by settings each cells through the -- function @f. create :: PrimType ty => Int -- ^ the size of the array -> (Int -> ty) -- ^ the function that set the value at the index -> UArray ty -- ^ the array created create n initializer | n == 0 = empty | otherwise = runST (new (Size n) >>= iter initializer) where iter :: (PrimType ty, PrimMonad prim) => (Int -> ty) -> MUArray ty (PrimState prim) -> prim (UArray ty) iter f ma = loop 0 where loop i | i == n = unsafeFreeze ma | otherwise = unsafeWrite ma i (f i) >> loop (i+1) {-# INLINE loop #-} {-# INLINE iter #-} -- | Create a pinned array that is filled by a 'filler' function (typically an IO call like hGetBuf) createFromIO :: PrimType ty => Size ty -- ^ the size of the array -> (Ptr ty -> IO (Size ty)) -- ^ filling function that -> IO (UArray ty) createFromIO size filler | size == 0 = return empty | otherwise = do mba <- newPinned size r <- withMutablePtr mba $ \p -> filler p case r of 0 -> return empty -- make sure we don't keep our array referenced by using empty _ | r < 0 -> error "filler returned negative number" | otherwise -> unsafeFreezeShrink mba r ----------------------------------------------------------------------- -- higher level collection implementation ----------------------------------------------------------------------- empty :: PrimType ty => UArray ty empty = UVecAddr (Offset 0) (Size 0) (FinalPtr $ error "empty de-referenced") singleton :: PrimType ty => ty -> UArray ty singleton ty = create 1 (\_ -> ty) -- | make an array from a list of elements. vFromList :: PrimType ty => [ty] -> UArray ty vFromList l = runST $ do ma <- new (Size len) iter 0 l $ \i x -> unsafeWrite ma i x unsafeFreeze ma where len = Data.List.length l iter _ [] _ = return () iter i (x:xs) z = z i x >> iter (i+1) xs z -- | transform an array to a list. vToList :: PrimType ty => UArray ty -> [ty] vToList a | null a = [] | otherwise = runST (unsafeIndexer a go) where !len = length a go :: (Offset ty -> ty) -> ST s [ty] go getIdx = return $ loop azero where loop i | i == Offset len = [] | otherwise = getIdx i : loop (i+Offset 1) {-# INLINE go #-} -- | Check if two vectors are identical equal :: (PrimType ty, Eq ty) => UArray ty -> UArray ty -> Bool equal a b | la /= lb = False | otherwise = loop 0 where !la = length a !lb = length b loop n | n == la = True | otherwise = (unsafeIndex a n == unsafeIndex b n) && loop (n+1) {- sizeEqual :: PrimType ty => UArray ty -> UArray ty -> Bool sizeEqual a b = length a == length b -- TODO optimise with direct comparaison of bytes or elements when possible -} -- | Compare 2 vectors vCompare :: (Ord ty, PrimType ty) => UArray ty -> UArray ty -> Ordering vCompare a b = loop 0 where !la = length a !lb = length b loop n | n == la = if la == lb then EQ else LT | n == lb = GT | otherwise = case unsafeIndex a n `compare` unsafeIndex b n of EQ -> loop (n+1) r -> r -- | Append 2 arrays together by creating a new bigger array append :: PrimType ty => UArray ty -> UArray ty -> UArray ty append a b | la == azero = b | lb == azero = a | otherwise = runST $ do r <- new (la+lb) ma <- unsafeThaw a mb <- unsafeThaw b copyAt r (Offset 0) ma (Offset 0) la copyAt r (sizeAsOffset la) mb (Offset 0) lb unsafeFreeze r where !la = lengthSize a !lb = lengthSize b concat :: PrimType ty => [UArray ty] -> UArray ty concat [] = empty concat l = case filterAndSum (Size 0) [] l of (_,[]) -> empty (_,[x]) -> x (totalLen,chunks) -> runST $ do r <- new totalLen doCopy r (Offset 0) chunks unsafeFreeze r where -- TODO would go faster not to reverse but pack from the end instead filterAndSum !totalLen acc [] = (totalLen, Prelude.reverse acc) filterAndSum !totalLen acc (x:xs) | len == Size 0 = filterAndSum totalLen acc xs | otherwise = filterAndSum (len+totalLen) (x:acc) xs where len = lengthSize x doCopy _ _ [] = return () doCopy r i (x:xs) = do unsafeCopyAtRO r i x (Offset 0) lx doCopy r (i `offsetPlusE` lx) xs where lx = lengthSize x -- | update an array by creating a new array with the updates. -- -- the operation copy the previous array, modify it in place, then freeze it. update :: PrimType ty => UArray ty -> [(Int, ty)] -> UArray ty update array modifiers = runST (thaw array >>= doUpdate modifiers) where doUpdate l ma = loop l where loop [] = unsafeFreeze ma loop ((i,v):xs) = write ma i v >> loop xs {-# INLINE loop #-} {-# INLINE doUpdate #-} unsafeUpdate :: PrimType ty => UArray ty -> [(Int, ty)] -> UArray ty unsafeUpdate array modifiers = runST (thaw array >>= doUpdate modifiers) where doUpdate l ma = loop l where loop [] = unsafeFreeze ma loop ((i,v):xs) = unsafeWrite ma i v >> loop xs {-# INLINE loop #-} {-# INLINE doUpdate #-} withPtr :: (PrimMonad prim, PrimType ty) => UArray ty -> (Ptr ty -> prim a) -> prim a withPtr vec@(UVecAddr start _ fptr) f = withFinalPtr fptr (\ptr -> f (ptr `plusPtr` os)) where sz = primSizeInBytes (vectorProxyTy vec) !(Offset os) = offsetOfE sz start withPtr vec@(UVecBA start _ pstatus a) f | isPinned pstatus = f (Ptr (byteArrayContents# a) `plusPtr` os) | otherwise = do -- TODO don't copy the whole vector, and just allocate+copy the slice. let !sz# = sizeofByteArray# a a' <- primitive $ \s -> do case newAlignedPinnedByteArray# sz# 8# s of { (# s2, mba #) -> case copyByteArray# a 0# mba 0# sz# s2 of { s3 -> case unsafeFreezeByteArray# mba s3 of { (# s4, ba #) -> (# s4, Ptr (byteArrayContents# ba) `plusPtr` os #) }}} f a' where sz = primSizeInBytes (vectorProxyTy vec) !(Offset os) = offsetOfE sz start recast :: (PrimType a, PrimType b) => UArray a -> UArray b recast = recast_ Proxy Proxy where recast_ :: (PrimType a, PrimType b) => Proxy a -> Proxy b -> UArray a -> UArray b recast_ pa pb array | aTypeSize == bTypeSize = unsafeRecast array | missing == 0 = unsafeRecast array | otherwise = throw $ InvalidRecast (RecastSourceSize alen) (RecastDestinationSize $ alen + missing) where aTypeSize@(Size as) = primSizeInBytes pa bTypeSize@(Size bs) = primSizeInBytes pb alen = length array * as missing = alen `mod` bs unsafeRecast :: (PrimType a, PrimType b) => UArray a -> UArray b unsafeRecast (UVecBA start len pinStatus b) = UVecBA (primOffsetRecast start) (sizeRecast len) pinStatus b unsafeRecast (UVecAddr start len a) = UVecAddr (primOffsetRecast start) (sizeRecast len) (castFinalPtr a) null :: UArray ty -> Bool null (UVecBA _ sz _ _) = sz == Size 0 null (UVecAddr _ l _) = l == Size 0 take :: PrimType ty => Int -> UArray ty -> UArray ty take nbElems v | nbElems <= 0 = empty | n >= vlen = v | otherwise = case v of UVecBA start _ pinst ba -> UVecBA start n pinst ba UVecAddr start _ fptr -> UVecAddr start n fptr where n = Size nbElems vlen = lengthSize v drop :: PrimType ty => Int -> UArray ty -> UArray ty drop nbElems v | nbElems <= 0 = v | n >= vlen = empty | otherwise = case v of UVecBA start len pinst ba -> UVecBA (start `offsetPlusE` n) (len - n) pinst ba UVecAddr start len fptr -> UVecAddr (start `offsetPlusE` n) (len - n) fptr where n = Size nbElems vlen = lengthSize v splitAt :: PrimType ty => Int -> UArray ty -> (UArray ty, UArray ty) splitAt nbElems v | nbElems <= 0 = (empty, v) | n == Size vlen = (v, empty) | otherwise = case v of UVecBA start len pinst ba -> ( UVecBA start n pinst ba , UVecBA (start `offsetPlusE` n) (len - n) pinst ba) UVecAddr start len fptr -> ( UVecAddr start n fptr , UVecAddr (start `offsetPlusE` n) (len - n) fptr) where n = Size $ min nbElems vlen vlen = length v splitElem :: PrimType ty => ty -> UArray ty -> (# UArray ty, UArray ty #) splitElem !ty r@(UVecBA start len pinst ba) | k == end = (# r, empty #) | k == start = (# empty, r #) | otherwise = (# UVecBA start (offsetAsSize k - offsetAsSize start) pinst ba , UVecBA k (len - (offsetAsSize k - offsetAsSize start)) pinst ba #) where !end = start `offsetPlusE` len !k = loop start loop !i | i < end && t /= ty = loop (i+Offset 1) | otherwise = i where t = primBaIndex ba i splitElem !ty r@(UVecAddr start len fptr) | k == end = (# r, empty #) | otherwise = (# UVecAddr start (offsetAsSize k - offsetAsSize start) fptr , UVecAddr k (len - (offsetAsSize k - offsetAsSize start)) fptr #) where !(Ptr addr) = withFinalPtrNoTouch fptr id !end = start `offsetPlusE` len !k = loop start loop !i | i < end && t /= ty = loop (i+Offset 1) | otherwise = i where t = primAddrIndex addr i {-# SPECIALIZE [3] splitElem :: Word8 -> UArray Word8 -> (# UArray Word8, UArray Word8 #) #-} {-# SPECIALIZE [3] splitElem :: Word32 -> UArray Word32 -> (# UArray Word32, UArray Word32 #) #-} revTake :: PrimType ty => Int -> UArray ty -> UArray ty revTake nbElems v = drop (length v - nbElems) v revDrop :: PrimType ty => Int -> UArray ty -> UArray ty revDrop nbElems v = take (length v - nbElems) v revSplitAt :: PrimType ty => Int -> UArray ty -> (UArray ty, UArray ty) revSplitAt n v = (drop idx v, take idx v) where idx = length v - n splitOn :: PrimType ty => (ty -> Bool) -> UArray ty -> [UArray ty] splitOn xpredicate ivec | len == 0 = [mempty] | otherwise = runST $ unsafeIndexer ivec (go ivec xpredicate) where !len = length ivec go :: PrimType ty => UArray ty -> (ty -> Bool) -> (Offset ty -> ty) -> ST s [UArray ty] go v predicate getIdx = return (loop azero azero) where loop !prevIdx@(Offset prevIdxo) !idx@(Offset idxo) | idx == Offset len = [sub v prevIdxo idxo] | otherwise = let e = getIdx idx idx' = idx + Offset 1 in if predicate e then sub v prevIdxo idxo : loop idx' idx' else loop prevIdx idx' {-# INLINE go #-} sub :: PrimType ty => UArray ty -> Int -> Int -> UArray ty sub vec startIdx expectedEndIdx | startIdx >= endIdx = empty | otherwise = case vec of UVecBA start _ pinst ba -> UVecBA (start + Offset startIdx) newLen pinst ba UVecAddr start _ fptr -> UVecAddr (start + Offset startIdx) newLen fptr where newLen = Offset endIdx - Offset startIdx endIdx = min expectedEndIdx len len = length vec findIndex :: PrimType ty => ty -> UArray ty -> Maybe Int findIndex tyOuter ba = runST $ unsafeIndexer ba (go tyOuter) where !len = length ba go :: PrimType ty => ty -> (Offset ty -> ty) -> ST s (Maybe Int) go ty getIdx = loop (Offset 0) where loop ofs@(Offset i) | ofs == Offset len = return Nothing | getIdx ofs == ty = return $ Just i | otherwise = loop (ofs + Offset 1) {-# SPECIALIZE [3] findIndex :: Word8 -> UArray Word8 -> Maybe Int #-} break :: PrimType ty => (ty -> Bool) -> UArray ty -> (UArray ty, UArray ty) break xpredicate xv | len == 0 = (empty, empty) | otherwise = runST $ unsafeIndexer xv (go xv xpredicate) where !len = length xv go :: PrimType ty => UArray ty -> (ty -> Bool) -> (Offset ty -> ty) -> ST s (UArray ty, UArray ty) go v predicate getIdx = return (findBreak $ Offset 0) where findBreak !i@(Offset io) | i == Offset len = (v, empty) | predicate (getIdx i) = splitAt io v | otherwise = findBreak (i + Offset 1) {-# INLINE findBreak #-} {-# INLINE go #-} {-# NOINLINE [2] break #-} {-# SPECIALIZE [2] break :: (Word8 -> Bool) -> UArray Word8 -> (UArray Word8, UArray Word8) #-} {- {-# RULES "break (== ty)" [3] forall (x :: forall ty . PrimType ty => ty) . break (== x) = breakElem x #-} {-# RULES "break (ty ==)" [3] forall (x :: forall ty . PrimType ty => ty) . break (x ==) = breakElem x #-} {-# RULES "break (== ty)" [3] forall (x :: Word8) . break (== x) = breakElem x #-} -} breakElem :: PrimType ty => ty -> UArray ty -> (UArray ty, UArray ty) breakElem xelem xv = let (# v1, v2 #) = splitElem xelem xv in (v1, v2) {-# SPECIALIZE [2] breakElem :: Word8 -> UArray Word8 -> (UArray Word8, UArray Word8) #-} {-# SPECIALIZE [2] breakElem :: Word32 -> UArray Word32 -> (UArray Word32, UArray Word32) #-} elem :: PrimType ty => ty -> UArray ty -> Bool elem !ty (UVecBA start len _ ba) | k == end = False | otherwise = True where !end = start `offsetPlusE` len !k = loop start loop !i | i < end && t /= ty = loop (i+Offset 1) | otherwise = i where t = primBaIndex ba i elem ty (UVecAddr start len fptr) | k == end = False | otherwise = True where !(Ptr addr) = withFinalPtrNoTouch fptr id !end = start `offsetPlusE` len !k = loop start loop !i | i < end && t /= ty = loop (i+Offset 1) | otherwise = i where t = primAddrIndex addr i {-# SPECIALIZE [2] elem :: Word8 -> UArray Word8 -> Bool #-} intersperse :: PrimType ty => ty -> UArray ty -> UArray ty intersperse sep v | len <= 1 = v | otherwise = runST $ unsafeCopyFrom v (len * 2 - 1) (go sep) where len = length v go :: PrimType ty => ty -> UArray ty -> Int -> MUArray ty s -> ST s () go sep' oldV oldI newV | oldI == len - 1 = unsafeWrite newV newI e | otherwise = do unsafeWrite newV newI e unsafeWrite newV (newI + 1) sep' where e = unsafeIndex oldV oldI newI = oldI * 2 span :: PrimType ty => (ty -> Bool) -> UArray ty -> (UArray ty, UArray ty) span p = break (not . p) map :: (PrimType a, PrimType b) => (a -> b) -> UArray a -> UArray b map f a = create (length a) (\i -> f $ unsafeIndex a i) mapIndex :: (PrimType a, PrimType b) => (Int -> a -> b) -> UArray a -> UArray b mapIndex f a = create (length a) (\i -> f i $ unsafeIndex a i) cons :: PrimType ty => ty -> UArray ty -> UArray ty cons e vec | len == Size 0 = singleton e | otherwise = runST $ do muv <- new (len + Size 1) unsafeCopyAtRO muv (Offset 1) vec (Offset 0) len unsafeWrite muv 0 e unsafeFreeze muv where !len = lengthSize vec snoc :: PrimType ty => UArray ty -> ty -> UArray ty snoc vec e | len == Size 0 = singleton e | otherwise = runST $ do muv <- new (len + Size 1) unsafeCopyAtRO muv (Offset 0) vec (Offset 0) len unsafeWrite muv (length vec) e unsafeFreeze muv where !len = lengthSize vec uncons :: PrimType ty => UArray ty -> Maybe (ty, UArray ty) uncons vec | nbElems == 0 = Nothing | otherwise = Just (unsafeIndex vec 0, sub vec 1 nbElems) where !nbElems = length vec unsnoc :: PrimType ty => UArray ty -> Maybe (UArray ty, ty) unsnoc vec | nbElems == 0 = Nothing | otherwise = Just (sub vec 0 lastElem, unsafeIndex vec lastElem) where !lastElem = nbElems - 1 !nbElems = length vec find :: PrimType ty => (ty -> Bool) -> UArray ty -> Maybe ty find predicate vec = loop 0 where !len = length vec loop i | i == len = Nothing | otherwise = let e = unsafeIndex vec i in if predicate e then Just e else loop (i+1) sortBy :: PrimType ty => (ty -> ty -> Ordering) -> UArray ty -> UArray ty sortBy xford vec = runST (thaw vec >>= doSort xford) where len = length vec doSort :: (PrimType ty, PrimMonad prim) => (ty -> ty -> Ordering) -> MUArray ty (PrimState prim) -> prim (UArray ty) doSort ford ma = qsort 0 (len - 1) >> unsafeFreeze ma where qsort lo hi | lo >= hi = return () | otherwise = do p <- partition lo hi qsort lo (p-1) qsort (p+1) hi partition lo hi = do pivot <- unsafeRead ma hi let loop i j | j == hi = return i | otherwise = do aj <- unsafeRead ma j i' <- if ford aj pivot == GT then return i else do ai <- unsafeRead ma i unsafeWrite ma j ai unsafeWrite ma i aj return $ i + 1 loop i' (j+1) i <- loop lo lo ai <- unsafeRead ma i ahi <- unsafeRead ma hi unsafeWrite ma hi ai unsafeWrite ma i ahi return i filter :: PrimType ty => (ty -> Bool) -> UArray ty -> UArray ty filter predicate vec = vFromList $ Data.List.filter predicate $ vToList vec reverse :: PrimType ty => UArray ty -> UArray ty reverse a | len == Size 0 = empty | otherwise = runST $ do ma <- newNative len $ \mba -> case a of (UVecBA start _ _ ba) -> goNative endOfs mba ba start (UVecAddr start _ fptr) -> withFinalPtr fptr $ \ptr -> goAddr endOfs mba ptr start unsafeFreeze ma where !len = lengthSize a !endOfs = Offset 0 `offsetPlusE` len goNative :: PrimType ty => Offset ty -> MutableByteArray# s -> ByteArray# -> Offset ty -> ST s () goNative !end !ma !ba !srcStart = loop (Offset 0) where !endI = sizeAsOffset ((srcStart + end) - Offset 1) loop !i | i == end = return () | otherwise = primMbaWrite ma i (primBaIndex ba (sizeAsOffset (endI - i))) >> loop (i+Offset 1) goAddr !end !ma !(Ptr ba) !srcStart = loop (Offset 0) where !endI = sizeAsOffset ((srcStart + end) - Offset 1) loop !i | i == end = return () | otherwise = primMbaWrite ma i (primAddrIndex ba (sizeAsOffset (endI - i))) >> loop (i+Offset 1) {-# SPECIALIZE [3] reverse :: UArray Word8 -> UArray Word8 #-} foldl :: PrimType ty => (a -> ty -> a) -> a -> UArray ty -> a foldl f initialAcc vec = loop 0 initialAcc where len = length vec loop i acc | i == len = acc | otherwise = loop (i+1) (f acc (unsafeIndex vec i)) foldr :: PrimType ty => (ty -> a -> a) -> a -> UArray ty -> a foldr f initialAcc vec = loop 0 where len = length vec loop i | i == len = initialAcc | otherwise = unsafeIndex vec i `f` loop (i+1) foldl' :: PrimType ty => (a -> ty -> a) -> a -> UArray ty -> a foldl' f initialAcc vec = loop 0 initialAcc where len = length vec loop i !acc | i == len = acc | otherwise = loop (i+1) (f acc (unsafeIndex vec i)) builderAppend :: (PrimType ty, PrimMonad state) => ty -> Builder (UArray ty) (MUArray ty) ty state () builderAppend v = Builder $ State $ \(i, st) -> if offsetAsSize i == chunkSize st then do cur <- unsafeFreeze (curChunk st) newChunk <- new (chunkSize st) unsafeWrite newChunk 0 v return ((), (Offset 1, st { prevChunks = cur : prevChunks st , prevChunksSize = chunkSize st + prevChunksSize st , curChunk = newChunk })) else do let Offset i' = i unsafeWrite (curChunk st) i' v return ((), (i + Offset 1, st)) builderBuild :: (PrimType ty, PrimMonad m) => Int -> Builder (UArray ty) (MUArray ty) ty m () -> m (UArray ty) builderBuild sizeChunksI ab | sizeChunksI <= 0 = builderBuild 64 ab | otherwise = do first <- new sizeChunks ((), (i, st)) <- runState (runBuilder ab) (Offset 0, BuildingState [] (Size 0) first sizeChunks) cur <- unsafeFreezeShrink (curChunk st) (offsetAsSize i) -- Build final array let totalSize = prevChunksSize st + offsetAsSize i new totalSize >>= fillFromEnd totalSize (cur : prevChunks st) >>= unsafeFreeze where sizeChunks = Size sizeChunksI fillFromEnd _ [] mua = return mua fillFromEnd !end (x:xs) mua = do let sz = lengthSize x unsafeCopyAtRO mua (sizeAsOffset (end - sz)) x (Offset 0) sz fillFromEnd (end - sz) xs mua toHexadecimal :: PrimType ty => UArray ty -> UArray Word8 toHexadecimal ba | len == Size 0 = empty | otherwise = runST $ do ma <- new (len `scale` 2) unsafeIndexer b8 (go ma) unsafeFreeze ma where b8 = unsafeRecast ba !len = lengthSize b8 !endOfs = Offset 0 `offsetPlusE` len go :: MUArray Word8 s -> (Offset Word8 -> Word8) -> ST s () go !ma !getAt = loop 0 0 where loop !dIdx !sIdx | sIdx == endOfs = return () | otherwise = do let !(W8# !w) = getAt sIdx (# wHi, wLo #) = Base16.unsafeConvertByte w unsafeWrite ma dIdx (W8# wHi) unsafeWrite ma (dIdx+1) (W8# wLo) loop (dIdx + 2) (sIdx+1)