----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.TH -- Copyright : (C) 2008-2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : MPTCs, fundeps -- -- Automatic generation of free monadic actions. -- ---------------------------------------------------------------------------- module Control.Monad.Free.TH ( -- * Free monadic actions makeFree -- $doc -- ** Example -- $example ) where import Control.Arrow import Control.Applicative import Control.Monad import Data.Char (toLower) import Language.Haskell.TH data Arg = Captured Type Exp | Param Type deriving (Show) params :: [Arg] -> [Type] params [] = [] params (Param t : xs) = t : params xs params (_ : xs) = params xs captured :: [Arg] -> [(Type, Exp)] captured [] = [] captured (Captured t e : xs) = (t, e) : captured xs captured (_ : xs) = captured xs zipExprs :: [Exp] -> [Exp] -> [Arg] -> [Exp] zipExprs (p:ps) cs (Param _ : as) = p : zipExprs ps cs as zipExprs ps (c:cs) (Captured _ _ : as) = c : zipExprs ps cs as zipExprs _ _ _ = [] tyVarBndrName :: TyVarBndr -> Name tyVarBndrName (PlainTV name) = name tyVarBndrName (KindedTV name _) = name findTypeOrFail :: String -> Q Name findTypeOrFail s = lookupTypeName s >>= maybe (fail $ s ++ " is not in scope") return findValueOrFail :: String -> Q Name findValueOrFail s = lookupValueName s >>= maybe (fail $ s ++ "is not in scope") return -- | Pick a name for an operation. -- For normal constructors it lowers first letter. -- For infix ones it omits the first @:@. mkOpName :: String -> Q String mkOpName (':':name) = return name mkOpName ( c :name) = return $ toLower c : name mkOpName _ = fail "null constructor name" -- | Check if parameter is used in type. usesTV :: Name -> Type -> Bool usesTV n (VarT name) = n == name usesTV n (AppT t1 t2) = any (usesTV n) [t1, t2] usesTV n (SigT t _ ) = usesTV n t usesTV n (ForallT bs _ t) = usesTV n t && n `notElem` map tyVarBndrName bs usesTV _ _ = False -- | Analyze constructor argument. mkArg :: Name -> Type -> Q Arg mkArg n t | usesTV n t = case t of -- if parameter is used as is, the return type should be () -- as well as the corresponding expression VarT _ -> return $ Captured (TupleT 0) (TupE []) -- if argument is of type (a1 -> ... -> aN -> param) then the -- return type is N-tuple (a1, ..., aN) and the corresponding -- expression is an N-tuple secion (,...,). AppT (AppT ArrowT _) _ -> do (ts, name) <- arrowsToTuple t when (name /= n) $ fail "return type is not the parameter" let tup = foldl AppT (TupleT $ length ts) ts xs <- mapM (const $ newName "x") ts return $ Captured tup (LamE (map VarP xs) (TupE (map VarE xs))) _ -> fail "don't know how to make Arg" | otherwise = return $ Param t where arrowsToTuple (AppT (AppT ArrowT t1) (VarT name)) = return ([t1], name) arrowsToTuple (AppT (AppT ArrowT t1) t2) = do (ts, name) <- arrowsToTuple t2 return (t1:ts, name) arrowsToTuple _ = fail "return type is not a variable" -- | Apply transformation to the return value independently of how many -- parameters does @e@ have. -- E.g. @mapRet Just (\x y z -> x + y * z)@ goes to -- @\x y z -> Just (x + y * z)@ mapRet :: (Exp -> Exp) -> Exp -> Exp mapRet f (LamE ps e) = LamE ps $ mapRet f e mapRet f e = f e -- | Unification of two types. -- @next@ with @a -> next@ gives @Maybe a@ return type -- @a -> next@ with @b -> next@ gives @Either a b@ return type unifyT :: (Type, Exp) -> (Type, Exp) -> Q (Type, [Exp]) unifyT (TupleT 0, _) (TupleT 0, _) = fail "can't accept 2 mere parameters" unifyT (TupleT 0, _) (t, e) = do maybe' <- ConT <$> findTypeOrFail "Maybe" nothing' <- ConE <$> findValueOrFail "Nothing" just' <- ConE <$> findValueOrFail "Just" return (AppT maybe' t, [nothing', mapRet (AppE just') e]) unifyT x y@(TupleT 0, _) = second reverse <$> unifyT y x unifyT (t1, e1) (t2, e2) = do either' <- ConT <$> findTypeOrFail "Either" left' <- ConE <$> findValueOrFail "Left" right' <- ConE <$> findValueOrFail "Right" return (AppT (AppT either' t1) t2, [mapRet (AppE left') e1, mapRet (AppE right') e2]) -- | Unifying a list of types (possibly refining expressions). -- Name is used when the return type is supposed to be arbitrary. unifyCaptured :: Name -> [(Type, Exp)] -> Q (Type, [Exp]) unifyCaptured a [] = return (VarT a, []) unifyCaptured _ [(t, e)] = return (t, [e]) unifyCaptured _ [x, y] = unifyT x y unifyCaptured _ _ = fail "can't unify more than 2 arguments that use type parameter" liftCon' :: Type -> Name -> [Name] -> Name -> [Type] -> Q [Dec] liftCon' f n ns cn ts = do -- prepare some names opName <- mkName <$> mkOpName (nameBase cn) m <- newName "m" a <- newName "a" monadFree <- findTypeOrFail "MonadFree" liftF <- findValueOrFail "liftF" -- look at the constructor parameters args <- mapM (mkArg n) ts let ps = params args -- these are not using type parameter cs = captured args -- these capture it somehow -- based on cs we get return type and refined expressions -- (e.g. with Nothing/Just or Left/Right tags) (retType, es) <- unifyCaptured a cs -- operation type is (a1 -> a2 -> ... -> aN -> m r) let opType = foldr (AppT . AppT ArrowT) (AppT (VarT m) retType) ps -- picking names for the implementation xs <- mapM (const $ newName "p") ps let pat = map VarP xs -- this is LHS exprs = zipExprs (map VarE xs) es args -- this is what ctor would be applied to fval = foldl AppE (ConE cn) exprs -- this is RHS without liftF q = map PlainTV $ qa ++ m : ns qa = case retType of VarT b | a == b -> [a]; _ -> [] f' = foldl AppT f (map VarT ns) return #if MIN_VERSION_template_haskell(2,10,0) [ SigD opName (ForallT q [ConT monadFree `AppT` f' `AppT` VarT m] opType) #else [ SigD opName (ForallT q [ClassP monadFree [f', VarT m]] opType) #endif , FunD opName [ Clause pat (NormalB $ AppE (VarE liftF) fval) [] ] ] -- | Provide free monadic actions for a single value constructor. liftCon :: Type -> Name -> [Name] -> Con -> Q [Dec] liftCon f n ns con = case con of NormalC cName fields -> liftCon' f n ns cName $ map snd fields RecC cName fields -> liftCon' f n ns cName $ map (\(_, _, ty) -> ty) fields InfixC (_,t1) cName (_,t2) -> liftCon' f n ns cName [t1, t2] _ -> fail $ "liftCon: Don't know how to lift " ++ show con -- | Provide free monadic actions for a type declaration. liftDec :: Dec -> Q [Dec] liftDec (DataD _ tyName tyVarBndrs cons _) | null tyVarBndrs = fail $ "Type " ++ show tyName ++ " needs at least one free variable" | otherwise = concat <$> mapM (liftCon con nextTyName (init tyNames)) cons where tyNames = map tyVarBndrName tyVarBndrs nextTyName = last tyNames con = ConT tyName liftDec dec = fail $ "liftDec: Don't know how to lift " ++ show dec -- | @$(makeFree ''Type)@ provides free monadic actions for the -- constructors of the given type. makeFree :: Name -> Q [Dec] makeFree tyCon = do info <- reify tyCon case info of TyConI dec -> liftDec dec _ -> fail "makeFree expects a type constructor" {- $doc To generate free monadic actions from a @Type@, it must be a @data@ declaration with at least one free variable. For each constructor of the type, a new function will be declared. Consider the following generalized definitions: > data Type a1 a2 … aN param = … > | FooBar t1 t2 t3 … tJ > | (:+) t1 t2 t3 … tJ > | t1 :* t2 > | t1 `Bar` t2 > | Baz { x :: t1, y :: t2, …, z :: tJ } > | … where each of the constructor arguments @t1, …, tJ@ is either: 1. A type, perhaps depending on some of the @a1, …, aN@. 2. A type dependent on @param@, of the form @s1 -> … -> sM -> param@, M ≥ 0. At most 2 of the @t1, …, tJ@ may be of this form. And, out of these two, at most 1 of them may have @M == 0@; that is, be of the form @param@. For each constructor, a function will be generated. First, the name of the function is derived from the name of the constructor: * For prefix constructors, the name of the constructor with the first letter in lowercase (e.g. @FooBar@ turns into @fooBar@). * For infix constructors, the name of the constructor with the first character (a colon @:@), removed (e.g. @:+@ turns into @+@). Then, the type of the function is derived from the arguments to the constructor: > … > fooBar :: (MonadFree Type m) => t1' -> … -> tK' -> m ret > (+) :: (MonadFree Type m) => t1' -> … -> tK' -> m ret > baz :: (MonadFree Type m) => t1' -> … -> tK' -> m ret > … The @t1', …, tK'@ are those @t1@ … @tJ@ that only depend on the @a1, …, aN@. The type @ret@ depends on those constructor arguments that reference the @param@ type variable: 1. If no arguments to the constructor depend on @param@, @ret ≡ a@, where @a@ is a fresh type variable. 2. If only one argument in the constructor depends on @param@, then @ret ≡ (s1, …, sM)@. In particular, f @M == 0@, then @ret ≡ ()@; if @M == 1@, @ret ≡ s1@. 3. If two arguments depend on @param@, (e.g. @u1 -> … -> uL -> param@ and @v1 -> … -> vM -> param@, then @ret ≡ Either (u1, …, uL) (v1, …, vM)@. Note that @Either a ()@ and @Either () a@ are both isomorphic to @Maybe a@. Because of this, when @L == 0@ or @M == 0@ in case 3., the type of @ret@ is simplified: * @ret ≡ Either (u1, …, uL) ()@ is rewritten to @ret ≡ Maybe (u1, …, uL)@. * @ret ≡ Either () (v1, …, vM)@ is rewritten to @ret ≡ Maybe (v1, …, vM)@. -} -- BEGIN Teletype.lhs {- $example This is literate Haskell! To run this example, open the source of this module and copy the whole comment block into a file with '.lhs' extension. For example, @Teletype.lhs@. @\{\-\# LANGUAGE DeriveFunctor, TemplateHaskell, FlexibleContexts \#\-\}@ > {-# LANGUAGE DeriveFunctor, TemplateHaskell, FlexibleContexts #-} -- > import Control.Monad (mfilter) > import Control.Monad.Loops (unfoldM) > import Control.Monad.Free (liftF, Free, iterM, MonadFree) > import Control.Monad.Free.TH (makeFree) > import Control.Applicative ((<$>)) > import System.IO (isEOF) > import Control.Exception (catch) > import System.IO.Error (ioeGetErrorString) > import System.Exit (exitSuccess) First, we define a data type with the primitive actions of a teleprinter. The @param@ will stand for the next action to execute. > type Error = String > > data Teletype param = Halt -- Abort (ignore all following instructions) > | NL param -- Newline > | Read (Char -> param) -- Get a character from the terminal > | ReadOrEOF { onEOF :: param, > onChar :: Char -> param } -- GetChar if not end of file > | ReadOrError (Error -> param) > (Char -> param) -- GetChar with error code > | param :\^^ String -- Write a message to the terminal > | (:%) param String [String] -- String interpolation > deriving (Functor) By including a 'makeFree' declaration: > makeFree ''Teletype the following functions have been made available: @ halt :: (MonadFree Teletype m) => m a nL :: (MonadFree Teletype m) => m () read :: (MonadFree Teletype m) => m Char readOrEOF :: (MonadFree Teletype m) => m (Maybe Char) readOrError :: (MonadFree Teletype m) => m (Either Error Char) (\\^^) :: (MonadFree Teletype m) => String -> m () (%) :: (MonadFree Teletype m) => String -> [String] -> m () @ To make use of them, we need an instance of 'MonadFree Teletype'. Since 'Teletype' is a 'Functor', we can use the one provided in the 'Control.Monad.Free' package. > type TeletypeM = Free Teletype Programs can be run in different ways. For example, we can use the system terminal through the @IO@ monad. > runTeletypeIO :: TeletypeM a -> IO a > runTeletypeIO = iterM run where > run :: Teletype (IO a) -> IO a > run Halt = do > putStrLn "This conversation can serve no purpose anymore. Goodbye." > exitSuccess > > run (Read f) = getChar >>= f > run (ReadOrEOF eof f) = isEOF >>= \b -> if b then eof > else getChar >>= f > > run (ReadOrError ferror f) = catch (getChar >>= f) (ferror . ioeGetErrorString) > run (NL rest) = putChar '\n' >> rest > run (rest :\^^ str) = putStr str >> rest > run ((:%) rest format tokens) = ttFormat format tokens >> rest > > ttFormat :: String -> [String] -> IO () > ttFormat [] _ = return () > ttFormat ('\\':'%':cs) tokens = putChar '%' >> ttFormat cs tokens > ttFormat ('%':cs) (t:tokens) = putStr t >> ttFormat cs tokens > ttFormat (c:cs) tokens = putChar c >> ttFormat cs tokens Now, we can write some helper functions: > readLine :: TeletypeM String > readLine = unfoldM $ mfilter (/= '\n') <$> readOrEOF And use them to interact with the user: > hello :: TeletypeM () > hello = do > (\^^) "Hello! What's your name?"; nL > name <- readLine > "Nice to meet you, %." % [name]; nL > halt We can transform any @TeletypeM@ into an @IO@ action, and run it: > main :: IO () > main = runTeletypeIO hello @ Hello! What's your name? $ Dave Nice to meet you, Dave. This conversation can serve no purpose anymore. Goodbye. @ When specifying DSLs in this way, we only need to define the semantics for each of the actions; the plumbing of values is taken care of by the generated monad instance. -} -- END Teletype.lhs