{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE UndecidableInstances #-} #include "free-common.h" ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.Free.Church -- Copyright : (C) 2008-2014 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : non-portable (rank-2 polymorphism, MTPCs) -- -- Church-encoded free monad transformer. -- ----------------------------------------------------------------------------- module Control.Monad.Trans.Free.Church ( -- * The free monad transformer FT(..) -- * The free monad , F, free, runF -- * Operations , improveT , toFT, fromFT , iterT , iterTM , hoistFT , transFT , joinFT , cutoff -- * Operations of free monad , improve , fromF, toF , retract , retractT , iter , iterM -- * Free Monads With Class , MonadFree(..) , liftF ) where import Control.Applicative import Control.Category ((<<<), (>>>)) import Control.Monad import Control.Monad.Catch (MonadCatch(..), MonadThrow(..)) import Control.Monad.Identity import Control.Monad.Trans.Class import Control.Monad.IO.Class import Control.Monad.Reader.Class import Control.Monad.Writer.Class import Control.Monad.State.Class import Control.Monad.Error.Class import Control.Monad.Cont.Class import Control.Monad.Free.Class import Control.Monad.Trans.Free (FreeT(..), FreeF(..), Free) import qualified Control.Monad.Trans.Free as FreeT import qualified Data.Foldable as F import qualified Data.Traversable as T import Data.Functor.Bind hiding (join) import Data.Functor.Classes.Compat #if !(MIN_VERSION_base(4,8,0)) import Data.Foldable (Foldable) import Data.Traversable (Traversable) #endif -- | The \"free monad transformer\" for a functor @f@ newtype FT f m a = FT { runFT :: forall r. (a -> m r) -> (forall x. (x -> m r) -> f x -> m r) -> m r } #ifdef LIFTED_FUNCTOR_CLASSES instance (Functor f, Monad m, Eq1 f, Eq1 m) => Eq1 (FT f m) where liftEq eq x y = liftEq eq (fromFT x) (fromFT y) instance (Functor f, Monad m, Ord1 f, Ord1 m) => Ord1 (FT f m) where liftCompare cmp x y= liftCompare cmp (fromFT x) (fromFT y) #else instance ( Functor f, Monad m, Eq1 f, Eq1 m # if !(MIN_VERSION_base(4,8,0)) , Functor m # endif ) => Eq1 (FT f m) where eq1 x y = eq1 (fromFT x) (fromFT y) instance ( Functor f, Monad m, Ord1 f, Ord1 m # if !(MIN_VERSION_base(4,8,0)) , Functor m # endif ) => Ord1 (FT f m) where compare1 x y = compare1 (fromFT x) (fromFT y) #endif instance (Eq1 (FT f m), Eq a) => Eq (FT f m a) where (==) = eq1 instance (Ord1 (FT f m), Ord a) => Ord (FT f m a) where compare = compare1 instance Functor (FT f m) where fmap f (FT k) = FT $ \a fr -> k (a . f) fr instance Apply (FT f m) where (<.>) = (<*>) instance Applicative (FT f m) where pure a = FT $ \k _ -> k a FT fk <*> FT ak = FT $ \b fr -> fk (\e -> ak (\d -> b (e d)) fr) fr instance Bind (FT f m) where (>>-) = (>>=) instance Monad (FT f m) where return = pure FT fk >>= f = FT $ \b fr -> fk (\d -> runFT (f d) b fr) fr instance MonadFree f (FT f m) where wrap f = FT (\kp kf -> kf (\ft -> runFT ft kp kf) f) instance MonadTrans (FT f) where lift m = FT (\a _ -> m >>= a) instance Alternative m => Alternative (FT f m) where empty = FT (\_ _ -> empty) FT k1 <|> FT k2 = FT $ \a fr -> k1 a fr <|> k2 a fr instance MonadPlus m => MonadPlus (FT f m) where mzero = FT (\_ _ -> mzero) mplus (FT k1) (FT k2) = FT $ \a fr -> k1 a fr `mplus` k2 a fr instance (Foldable f, Foldable m, Monad m) => Foldable (FT f m) where foldr f r xs = F.foldr (<<<) id inner r where inner = runFT xs (return . f) (\xg xf -> F.foldr (liftM2 (<<<) . xg) (return id) xf) {-# INLINE foldr #-} #if MIN_VERSION_base(4,6,0) foldl' f z xs = F.foldl' (!>>>) id inner z where (!>>>) h g = \r -> g $! h r inner = runFT xs (return . flip f) (\xg xf -> F.foldr (liftM2 (>>>) . xg) (return id) xf) {-# INLINE foldl' #-} #endif instance (Monad m, Traversable m, Traversable f) => Traversable (FT f m) where traverse f (FT k) = fmap (join . lift) . T.sequenceA $ k traversePure traverseFree where traversePure = return . fmap return . f traverseFree xg = return . fmap (wrap . fmap (join . lift)) . T.traverse (T.sequenceA . xg) instance (MonadIO m) => MonadIO (FT f m) where liftIO = lift . liftIO {-# INLINE liftIO #-} instance (Functor f, MonadError e m) => MonadError e (FT f m) where throwError = lift . throwError {-# INLINE throwError #-} m `catchError` f = toFT $ fromFT m `catchError` (fromFT . f) instance MonadCont m => MonadCont (FT f m) where callCC f = join . lift $ callCC (\k -> return $ f (lift . k . return)) instance MonadReader r m => MonadReader r (FT f m) where ask = lift ask {-# INLINE ask #-} local f = hoistFT (local f) {-# INLINE local #-} instance (Functor f, MonadWriter w m) => MonadWriter w (FT f m) where tell = lift . tell {-# INLINE tell #-} listen = toFT . listen . fromFT pass = toFT . pass . fromFT #if MIN_VERSION_mtl(2,1,1) writer w = lift (writer w) {-# INLINE writer #-} #endif instance MonadState s m => MonadState s (FT f m) where get = lift get {-# INLINE get #-} put = lift . put {-# INLINE put #-} #if MIN_VERSION_mtl(2,1,1) state f = lift (state f) {-# INLINE state #-} #endif instance MonadThrow m => MonadThrow (FT f m) where throwM = lift . throwM {-# INLINE throwM #-} instance (Functor f, MonadCatch m) => MonadCatch (FT f m) where catch m f = toFT $ fromFT m `Control.Monad.Catch.catch` (fromFT . f) {-# INLINE catch #-} -- | Generate a Church-encoded free monad transformer from a 'FreeT' monad -- transformer. toFT :: Monad m => FreeT f m a -> FT f m a toFT (FreeT f) = FT $ \ka kfr -> do freef <- f case freef of Pure a -> ka a Free fb -> kfr (\x -> runFT (toFT x) ka kfr) fb -- | Convert to a 'FreeT' free monad representation. fromFT :: (Monad m, Functor f) => FT f m a -> FreeT f m a fromFT (FT k) = FreeT $ k (return . Pure) (\xg -> runFreeT . wrap . fmap (FreeT . xg)) -- | The \"free monad\" for a functor @f@. type F f = FT f Identity -- | Unwrap the 'Free' monad to obtain it's Church-encoded representation. runF :: Functor f => F f a -> (forall r. (a -> r) -> (f r -> r) -> r) runF (FT m) = \kp kf -> runIdentity $ m (return . kp) (\xg -> return . kf . fmap (runIdentity . xg)) -- | Wrap a Church-encoding of a \"free monad\" as the free monad for a functor. free :: (forall r. (a -> r) -> (f r -> r) -> r) -> F f a free f = FT (\kp kf -> return $ f (runIdentity . kp) (runIdentity . kf return)) -- | Tear down a free monad transformer using iteration. iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FT f m a -> m a iterT phi (FT m) = m return (\xg -> phi . fmap xg) {-# INLINE iterT #-} -- | Tear down a free monad transformer using iteration over a transformer. iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FT f m a -> t m a iterTM f (FT m) = join . lift $ m (return . return) (\xg -> return . f . fmap (join . lift . xg)) -- | Lift a monad homomorphism from @m@ to @n@ into a monad homomorphism from @'FT' f m@ to @'FT' f n@ -- -- @'hoistFT' :: ('Monad' m, 'Monad' n, 'Functor' f) => (m ~> n) -> 'FT' f m ~> 'FT' f n@ hoistFT :: (Monad m, Monad n) => (forall a. m a -> n a) -> FT f m b -> FT f n b hoistFT phi (FT m) = FT (\kp kf -> join . phi $ m (return . kp) (\xg -> return . kf (join . phi . xg))) -- | Lift a natural transformation from @f@ to @g@ into a monad homomorphism from @'FT' f m@ to @'FT' g n@ transFT :: (forall a. f a -> g a) -> FT f m b -> FT g m b transFT phi (FT m) = FT (\kp kf -> m kp (\xg -> kf xg . phi)) -- | Pull out and join @m@ layers of @'FreeT' f m a@. joinFT :: (Monad m, Traversable f) => FT f m a -> m (F f a) joinFT (FT m) = m (return . return) (\xg -> liftM wrap . T.mapM xg) -- | Cuts off a tree of computations at a given depth. -- If the depth is 0 or less, no computation nor -- monadic effects will take place. -- -- Some examples (n ≥ 0): -- -- prop> cutoff 0 _ == return Nothing -- prop> cutoff (n+1) . return == return . Just -- prop> cutoff (n+1) . lift == lift . liftM Just -- prop> cutoff (n+1) . wrap == wrap . fmap (cutoff n) -- -- Calling 'retract . cutoff n' is always terminating, provided each of the -- steps in the iteration is terminating. cutoff :: (Functor f, Monad m) => Integer -> FT f m a -> FT f m (Maybe a) cutoff n = toFT . FreeT.cutoff n . fromFT -- | -- 'retract' is the left inverse of 'liftF' -- -- @ -- 'retract' . 'liftF' = 'id' -- @ #if __GLASGOW_HASKELL__ < 710 retract :: (Functor f, Monad f) => F f a -> f a #else retract :: Monad f => F f a -> f a #endif retract m = runF m return join {-# INLINE retract #-} -- | Tear down a free monad transformer using iteration over a transformer. retractT :: (MonadTrans t, Monad (t m), Monad m) => FT (t m) m a -> t m a retractT (FT m) = join . lift $ m (return . return) (\xg xf -> return $ xf >>= join . lift . xg) -- | Tear down an 'F' 'Monad' using iteration. iter :: Functor f => (f a -> a) -> F f a -> a iter phi = runIdentity . iterT (Identity . phi . fmap runIdentity) {-# INLINE iter #-} -- | Like 'iter' for monadic values. iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> F f a -> m a iterM phi = iterT phi . hoistFT (return . runIdentity) -- | Convert to another free monad representation. fromF :: (Functor f, MonadFree f m) => F f a -> m a fromF m = runF m return wrap {-# INLINE fromF #-} -- | Generate a Church-encoded free monad from a 'Free' monad. toF :: Free f a -> F f a toF = toFT {-# INLINE toF #-} -- | Improve the asymptotic performance of code that builds a free monad with only binds and returns by using 'F' behind the scenes. -- -- This is based on the \"Free Monads for Less\" series of articles by Edward Kmett: -- -- -- -- -- and \"Asymptotic Improvement of Computations over Free Monads\" by Janis Voightländer: -- -- improve :: Functor f => (forall m. MonadFree f m => m a) -> Free f a improve m = fromF m {-# INLINE improve #-} -- | Improve the asymptotic performance of code that builds a free monad transformer -- with only binds and returns by using 'FT' behind the scenes. -- -- Similar to 'improve'. improveT :: (Functor f, Monad m) => (forall t. MonadFree f (t m) => t m a) -> FreeT f m a improveT m = fromFT m {-# INLINE improveT #-}