{-# LANGUAGE ConstraintKinds , GADTs , RankNTypes , TypeOperators , FlexibleInstances , MultiParamTypeClasses , UndecidableInstances , ScopedTypeVariables , DeriveFunctor , DeriveFoldable , DeriveTraversable #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Free -- License : BSD-style (see the file LICENSE) -- -- Maintainer : sjoerd@w3future.com -- Stability : experimental -- Portability : non-portable -- -- A free functor is left adjoint to a forgetful functor. -- In this package the forgetful functor forgets class constraints. ----------------------------------------------------------------------------- module Data.Functor.Free where import Control.Applicative import Control.Comonad import Data.Constraint hiding (Class) import Data.Constraint.Forall import Data.Functor.Identity import Data.Functor.Compose import Data.Foldable import Data.Traversable import Data.Void import Data.Algebra -- | The free functor for constraint @c@. newtype Free c a = Free { runFree :: forall b. c b => (a -> b) -> b } unit :: a -> Free c a unit a = Free $ \k -> k a rightAdjunct :: c b => (a -> b) -> Free c a -> b rightAdjunct f g = runFree g f rightAdjunctF :: ForallF c f => (a -> f b) -> Free c a -> f b rightAdjunctF = h instF rightAdjunct where h :: ForallF c f => (ForallF c f :- c (f b)) -> (c (f b) => (a -> f b) -> Free c a -> f b) -> (a -> f b) -> Free c a -> f b h (Sub Dict) f = f rightAdjunctT :: ForallT c t => (a -> t f b) -> Free c a -> t f b rightAdjunctT = h instT rightAdjunct where h :: ForallT c t => (ForallT c t :- c (t f b)) -> (c (t f b) => (a -> t f b) -> Free c a -> t f b) -> (a -> t f b) -> Free c a -> t f b h (Sub Dict) f = f -- | @counit = rightAdjunct id@ counit :: c a => Free c a -> a counit = rightAdjunct id -- | @leftAdjunct f = f . unit@ leftAdjunct :: (Free c a -> b) -> a -> b leftAdjunct f = f . unit instance Functor (Free c) where fmap f (Free g) = Free (g . (. f)) instance Applicative (Free c) where pure = unit fs <*> as = Free $ \k -> runFree fs (\f -> runFree as (k . f)) instance ForallF c (Free c) => Monad (Free c) where return = unit (>>=) = flip rightAdjunctF instance (ForallF c Identity, ForallF c (Free c), ForallF c (Compose (Free c) (Free c))) => Comonad (Free c) where extract = runIdentity . rightAdjunctF Identity extend g = fmap g . getCompose . rightAdjunctF (Compose . return . return) instance c ~ Class f => Algebra f (Free c a) where algebra fa = Free $ \k -> evaluate (fmap (rightAdjunct k) fa) newtype LiftAFree c f a = LiftAFree { getLiftAFree :: f (Free c a) } instance (Applicative f, c ~ Class s) => Algebra s (LiftAFree c f a) where algebra = LiftAFree . fmap algebra . traverse getLiftAFree instance ForallT c (LiftAFree c) => Foldable (Free c) where foldMap = foldMapDefault instance ForallT c (LiftAFree c) => Traversable (Free c) where traverse f = getLiftAFree . rightAdjunctT (LiftAFree . fmap pure . f) convert :: (c (f a), Applicative f) => Free c a -> f a convert = rightAdjunct pure convertClosed :: c r => Free c Void -> r convertClosed = rightAdjunct absurd -- * Coproducts -- | Products of @Monoid@s are @Monoid@s themselves. But coproducts of @Monoid@s are not. -- However, the free @Monoid@ applied to the coproduct /is/ a @Monoid@, and it is the coproduct in the category of @Monoid@s. -- This is also called the free product, and generalizes to any algebraic class. type Coproduct c m n = Free c (Either m n) coproduct :: c r => (m -> r) -> (n -> r) -> Coproduct c m n -> r coproduct m n = rightAdjunct (either m n) inL :: m -> Coproduct c m n inL = unit . Left inR :: n -> Coproduct c m n inR = unit . Right type InitialObject c = Free c Void initial :: c r => InitialObject c -> r initial = rightAdjunct absurd