
fsmActions – a Haskell library for
finite state machines & FSM actions

Andy Gimblett
haskell@gimbo.org.uk

version 0.1 — June 30, 2009

1 Introduction

This is a library for representing and manipulating finite state machines (FSMs) in Haskell,
with an emphasis on computing the effects of sequences of transitions across entire machines
(which we call actions), and in particular investigating action equivalences between such
sequences.

The motivation for writing this library is investigating models of user interfaces; in this
context, states are implicit, transitions correspond to UI events (e.g. button presses),
and sequences of transitions correspond to sequences of user actions. We’re interested
in comparing actions, which are the effects of sequences of transitions across the whole
device (for example, noticing when some action is in fact an undo); for that we need a
representation geared towards such comparisons – hence this library, and its idiosyncratic
view of what’s important about FSMs, which differs somewhat from alternative definitions
the reader may be familiar with. E.g. we are unconcerned with start/accepting states (as
found in finite automata), and – for now at least – output functions (as found in finite state
transducers). We are interested only in finite machines with total transition functions, else
we might call our machines labelled transition systems. Future versions of the library
might add some or all of these features, particularly if someone else has an itch to scratch.
More generally, perhaps someone else will find this useful, hence its release as a library.

The rest of this document is structured as follows. Section 2 introduces and defines the
mathmatical abstractions on which the library is based. Section 3 outlines the current
implementation in Haskell, though the full details are left to the Haddock documentation.
Section 4 suggests future work. Section 5 describes the history of the library.

1



A

B

C

D

x

y

x

y

y

x

x

y

(a) A finite state machine

A

B

C

D

x

y

y

xy

(b) With self-loops removed

Figure 1: Two graphical representations of the same FSM

2 Definitions

2.1 Finite state machines

For the purpose of this library, a finite state machine (FSM) is a tuple (S, Σ, y) where
S is a finite set (of states), Σ is a finite set (of symbols) called the system’s alphabet,
and y : S ×Σ → P(S) is a total function, called the machine’s transition function (we
have chosen to define y as a total function to the powerset of states, as this unifies the
treatment of deterministic and nondeterministic machines).

Given p ∈ S and a ∈ Σ, we call the set of states in y(p, a) the transition set for a at p,
written py

a
.

We introduce an infix shorthand for single transitions:

∀ p, q ∈ S • ∀ a ∈ Σ • p
ayq ⇐⇒ q ∈ py

a

Here, p and q are called the source and destination states of the transition, respectively,
and a is called its label.

2



Example

Consider the FSM illustrated in figure 1(a), i.e. (S, Σ, y) with:

S = {A, B, C,D}
Σ = {x, y}
y = {A xyB, A

y
yC, B

xyB, B
y

yC, C
xyD, C

y
yC, D

xyD, D
y

yA}

Note abuse of notation in enumerating y here; properly it would written as

y = {(A, x) 7→ {B}, (A, y) 7→ {C}, (B, x) 7→ {B}, (B, y) 7→ {C}, · · · }

So, e.g. Ay
x

= {B}, Ay
y

= {C}, etc.

This FSM includes a number of self-loops, e.g. B
xy B. Because y is total, self-loops

may in general be omitted from FSM representations without difficulty: provided S and
Σ are known, the self-loops may be easily inferred. For example, figure 1(b) illustrates the
same FSM without self-loops, and we could write it out as:

S = {A, B, C,D}
Σ = {x, y}
y = {A xyB, A

y
yC, B

y
yC, C

xyD, D
y

yA, }

2.2 Nondeterminism

An FSM (S, Σ, y) is nondeterministic (an NFSM) if the transition set for some word
at some state has more than one member. Equivalently, if:

∃ p, q, r ∈ S ∧ ∃ a ∈ Σ • p
ayq ∧ p

ayr ∧ q 6= r

Otherwise the machine is deterministic (a DFSM).

Examples

Both machines in figure 1 are deterministic. Figure 2 illustrates a nondeterministic FSM

where S = {E, F, G, H} and Σ = {j, k} (with implicit self-loops omitted, e.g. E
j

y E).

Here, for example, we have Ey
k

= {F, G}, i.e. both E
kyF and E

kyG.

In §2.1 we stated that self-loops may in general be omitted from FSM representations, and
inferred as required. With NFSMs, some care must be taken. Consider the example in

figure 2; as well as four implicit self-loops, there is also an explicit self-loop H
j

yH. This

cannot be removed, because it is a source of nondeterminism, along with H
j

yE.

3



E

F

G

H

k

k

j

kj

j

Figure 2: A nondeterministic FSM

2.3 Strings and destination sets

We adopt the standard definition of strings over an alphabet. Specifically, if Σ is an
alphabet then Σ∗, the set of strings over Σ is the smallest set such that:

1. Σ∗ contains the empty string: λ ∈ Σ∗

2. w ∈ Σ∗ ∧ a ∈ Σ =⇒ wa ∈ Σ∗

Then the transition function y : (S ×Σ) → P(S) may be lifted to the string transition
function � : (S × Σ∗) → P(S) as follows:

1. �(p, λ) = {p}

2. �(p, wa) =
⋃
{qy

a
| q ∈ p−→w }

Given p ∈ S and w ∈ Σ∗, we call the set of states in � (p, w) the destination set for w
at p, written p−→w .

As with single symbols, we introduce an infix shorthand for single string transitions:

∀ p, q ∈ S • ∀ w ∈ Σ∗ • p
w
�q ⇐⇒ q ∈ p−→w

Given p ∈ S, two strings are said to be destination equivalent at p, written ∼p, if their
destination sets at p are identical:

∀ p ∈ S • ∀ w, x ∈ Σ∗ • w ∼p x ⇐⇒ p−→w = p−→x

Examples

Consider the DFSM in figure 1; here we have, for example A
xyxxx
� D and C

xyxxx
� B.

4



Consider the NFSM in figure 2; here we have (for example) E−−−→
kkjjk

= {H, F}, so that both

E
kkjjk
� H and E

kkjjk
� F .

2.4 Actions and action equivalence

Given an FSM (S, Σ, y), for every w ∈ Σ∗, w’s action, written −→w ⊆ S × P(S) captures
its effect across every state in S:

−→w = {(p, p−→w ) | p ∈ S}

Thus, an action captures the effect of a string of transitions, across all states in the machine.

An action is deterministic if, for every one of its pairs, the destination set found in
the pair’s second element has only a single member; otherwise it is nondeterministic.
We state without proof that an FSM is deterministic if and only if all of its actions are
deterministic.

Two strings are said to be action equivalent, written ∼, if their actions are identical:

∀w, x ∈ Σ∗ • w ∼ x ⇐⇒ −→w = −→x

2.4.1 Examples

Consider again the FSM in figure 1. Here are some actions over this machine:

−→x = {(A, {B}), (B, {B}), (C, {D}), (D, {D})}
−→y = {(A, {C}), (B, {C}), (C, {C}), (D, {A})}
−→xx = {(A, {B}), (B, {B}), (C, {D}), (D, {D})}
−→xy = {(A, {C}), (B, {C}), (C, {A}), (D, {A})}
−−→xxx = {(A, {B}), (B, {B}), (C, {D}), (D, {D})}
−−→xyy = {(A, {C}), (B, {C}), (C, {C}), (D, {C})}

Notice that xx ∼ xxx, for example, and that all of these actions are determinstic – as we
would expect as the FSM is determinstic too.

Conversely, consider the nondeterministic FSM in figure 2. Here we have some nondeter-
minstic actions, e.g.

−→
j = {(E, {E}), (F, {G}), (G, {G}), (H, {E, H})}
−→
jk = {(E, {F, G}), (F, {H}), (G, {H}), (H, {F, G, H})}
−→
jkj = {(E, {G}), (F, {E, H}), (G, {E, H}), (H, {E, G, H})}

5



3 Implementation

3.1 Basics

The current Haskell implementation is focused strongly on actions, and makes some sim-
plifying assumptions about FSMs. In particular, the members of the set S of states are
integers, counting upwards from 0 (so e.g. in an FSM with 5 states, S = {0, 1, 2, 3, 4}.
In the current implementation, S is not represented explicitly, but rather implicitly, as a
property of the actions in the FSM (see below).

type State = Int

A destination set then consists of a set of integers, where all members of the set must be
smaller than the number of states in the FSM. In the current implementation, we represent
such sets as plain Haskell integer lists:

newtype DestinationSet = DestinationSet {
destinations :: [State]

} deriving (Eq, Ord, Show)

Then an action is just a list of destination sets; the index of each destination set within the
list is the set’s corresponding source state; for example, the first entry in the list contains
the destination set for state 0. Contrast this with the definition in §2.4, where source states
are explicitly paired with their destination sets.

newtype Action = Action {
destinationSets :: [DestinationSet]

} deriving (Eq, Ord, Show)

Actions may be constructed either directly using the Action constructor, or via conve-
nience functions obviating the need to decorate destination lists with the DestinationSet

constructor.

mkAction :: [[State]] −> Action
mkDAction :: [State] −> Action

A finite state machine is then a mapping from alphabet symbols to actions; each action
tells us the effect, over the whole machine, of a particular singleton symbol. Note that this
is parametric over the symbol type — typically we expect to use Chars or Strings.

newtype FSM sy = FSM {
unFSM :: M.Map sy Action

} deriving (Eq, Ord, Show)

6



It’s then easy to compute the machine’s set of states (from the length of the first action
found in the map, assuming they’re all the same length – see §3.2) and its alphabet (just
the keys of the map); but note that both of these results are lists, not sets.

states :: FSM sy −> [State]
alphabet :: FSM sy −> [sy]

For convenience, we expose the lookup function of an FSM’s underlying Map.

fsmAction :: Ord sy => sy −> FSM sy −> Maybe Action

Finally, we introduce a type, Word, for sequences of symbols.

newtype Word sy = Word [sy]

3.2 Well-formedness

In our implementation, an FSM is well-formed provided:

• Every action is the same length (the number of states in the machine).

• None of those destination sets contain out-of-range destination state values (i.e. neg-
ative or too high).

An FSM should be checked for well-formedness after construction (which typically involves
some I/O), using the isWellFormed function, yielding a WellFormed value encoding en-
codes any problems found.

data WellFormed sy = WellFormed [sy]
| BadLengths [(sy, Int)]
| BadActions [(sy, Action)]
deriving (Eq, Show)

isWellFormed :: Ord sy => FSM sy −> WellFormed sy

If all actions do not have the same length, the BadLengths constructor contains a full list of
(symbol, action length) pairs so discrepancies may be identified. Similarly, if some actions
contain out-of-range destinations, the BadActions constructor lists the offending actions
and their corresponding symbols. If all is well, the WellFormed constructor is used, but
always carries an empty list (this is a wart, but would appear to require GADTs if we wish
to avoid it, which seems a little heavyweight).

7



3.3 Normalisation

An FSM which may be normalised, which ensures that all of its actions’ destination sets
are non-empty (empty ones become self-loops), are sorted and free from duplicates. Like
well-formedness checks, this can be useful for cleaning data after I/O or conversion from
other formats.

normalise :: FSM sy −> FSM sy

3.4 Computing actions/equivalences for strings

Given the actions for two strings w and x, append computes the action for the string wx
formed by concatenating the strings. We map over every source state in the first action, and
for every state in each destination set, we (appendAtState) look up the set of destination
states reached from that state via the second action (actionLookup), collecting the results
for each source state by flattening the list produced, sorting it, and removing duplicates.

append :: Action −> Action −> Action
appendAtState :: DestinationSet −> Action −> DestinationSet
actionLookup :: Action −> State −> DestinationSet

While this works nicely as an easily comprehensible canonical implementation of append

— and is handy for testing purposes — we suspect a more efficient algorithm, probably
based on a better representation than Haskell lists, will be found for future versions of the
library.

It’s then quite straightforward to compute the action of a given word (by folding append

over the actions for the word’s constituent symbols), and to test action equivalences on
words. Note that since a word may include symbols not in the machine’s alphabet, action’s
return type (and much of the computation) necessarily has type Maybe Action.

action :: Ord sy => FSM sy −> Word sy −> Maybe Action
actionEquiv :: Ord sy => FSM sy −> Word sy −> Word sy −> Bool

3.5 Computing destination sets/equivalences for strings

Given a method to compute actions, computation of destination sets and destination equiv-
alences is then straightforward (with the same comment regarding the use of Maybe).

destinationSet :: Ord sy => FSM sy −> State −> Word sy −> Maybe
DestinationSet

destinationEquiv :: Ord sy => FSM sy −> State −> Word sy −> Word sy −> Bool

8



3.6 The identity action

An FSM’s identity action is the action which maps all states back onto just themselves.
Because this depends on the size of the FSM, there is no general identity action for all
FSMs — which is the primary reason FSM is not an instance of Data.Monoid.

fsmIdentity :: FSM sy −> Action

3.7 Determinism checks

We can test if an action or FSM is determinstic.

isDAction :: Action −> Bool
isDFSM :: FSM sy −> Bool

3.8 FSM representations for I/O

We currently support two serialisations of FSMs; more may be added in the future (see
also §4.5).

3.8.1 Data.FsmActions.FsmMatrix

Here an FSM is represented as a single matrix, with one (newline-separated) row per state,
and one (whitespace-separated) column per symbol. The first row contains symbol names.
Subsequent rows contain destination sets as comma-separated lists of states. State/row
numbering starts at 0.

Note that this representation currently suffers from the restriction that symbol names may
not contain whitespace. TODO: check, and then consider fixing this (or at least providing
a workaround, e.g. allowing double-quoted symbol names).

TODO: Say more here, and give examples.

3.8.2 Data.FsmActions.ActionMatrix

Here an FSM is represented as a collection of binary adjacency matrices, one per action.

TODO: Say more here, and give examples.

9



4 Future work

4.1 Unit tests for Data.FsmActions.ActionMatrix

We have unit tests for the core of the module, and the FsmMatrix representation, but
should add some for this too.

4.2 More examples

Add more examples of the various representations.

4.3 Quickcheck tests

We currently have some HUnit-based unit tests, but there are some properties which could
usefully be QuickChecked, for example:

∀w, x, y ∈ Σ∗ • w = xy =⇒ −→w = append(−→x ,−→y )

4.4 Faster representations

Plain Haskell lists are surely not the fastest representation we could use; in particular,
appending actions is based on many lookups of destination sets within actions, via (!!),
which is O(n). A tree-based representation should give us O(log n). An unboxed repre-
sentation (since, ultimately, we’re just looking up integers) would be even better — but as
destination sets vary in size, it’s not currently clear how to implement that. Memoization
may also have a role to play.

4.5 Interfaces to other packages

Interfaces to:

• fgl

• Data.Graph

• graphviz

• halex

10



5 History

5.1 version 0.1 – June 30, 2009

First version of the library, Cabal-ised and released to Hackage. Naive implementation
based on plain Haskell lists. Support for ActionMatrix and FsmMatrix serialisation for-
mats. HUnit for unit tests.

11


