{-# LANGUAGE GeneralizedNewtypeDeriving #-} -- | Defunctionalization of typed, monomorphic Futhark programs without modules. module Futhark.Internalise.Defunctionalise ( transformProg ) where import Control.Arrow (first, second) import Control.Monad.RWS import Data.Bifunctor hiding (first, second) import Data.Foldable import Data.List import Data.Loc import qualified Data.Map.Strict as M import qualified Data.Set as S import qualified Data.Sequence as Seq import Futhark.MonadFreshNames import Language.Futhark import Futhark.Representation.AST.Pretty () -- | A static value stores additional information about the result of -- defunctionalization of an expression, aside from the residual expression. data StaticVal = Dynamic CompType | LambdaSV [VName] Pattern StructType Exp Env -- ^ The 'VName's are shape parameters that are bound -- by the 'Pattern'. | RecordSV [(Name, StaticVal)] | DynamicFun (Exp, StaticVal) StaticVal | IntrinsicSV deriving (Show) -- | Environment mapping variable names to their associated static value. type Env = M.Map VName StaticVal localEnv :: Env -> DefM a -> DefM a localEnv env = local $ second (env<>) -- Even when using a "new" environment (for evaluating closures) we -- still ram the global environment of DynamicFuns in there. localNewEnv :: Env -> DefM a -> DefM a localNewEnv env = local $ \(globals, old_env) -> (globals, M.filterWithKey (\k _ -> k `S.member` globals) old_env <> env) extendEnv :: VName -> StaticVal -> DefM a -> DefM a extendEnv vn sv = localEnv (M.singleton vn sv) askEnv :: DefM Env askEnv = asks snd isGlobal :: VName -> DefM a -> DefM a isGlobal v = local $ first (S.insert v) -- | Returns the defunctionalization environment restricted -- to the given set of variable names and types. restrictEnvTo :: NameSet -> DefM Env restrictEnvTo (NameSet m) = restrict <$> ask where restrict (globals, env) = M.mapMaybeWithKey keep env where keep k sv = do guard $ not $ k `S.member` globals u <- M.lookup k m Just $ restrict' u sv restrict' Nonunique (Dynamic t) = Dynamic $ t `setUniqueness` Nonunique restrict' _ (Dynamic t) = Dynamic t restrict' u (LambdaSV dims pat t e env) = LambdaSV dims pat t e $ M.map (restrict' u) env restrict' u (RecordSV fields) = RecordSV $ map (fmap $ restrict' u) fields restrict' u (DynamicFun (e, sv1) sv2) = DynamicFun (e, restrict' u sv1) $ restrict' u sv2 restrict' _ IntrinsicSV = IntrinsicSV -- | Defunctionalization monad. The Reader environment tracks both -- the current Env as well as the set of globally defined dynamic -- functions. This is used to avoid unnecessarily large closure -- environments. newtype DefM a = DefM (RWS (S.Set VName, Env) (Seq.Seq ValBind) VNameSource a) deriving (Functor, Applicative, Monad, MonadReader (S.Set VName, Env), MonadWriter (Seq.Seq ValBind), MonadFreshNames) -- | Run a computation in the defunctionalization monad. Returns the result of -- the computation, a new name source, and a list of lifted function declations. runDefM :: VNameSource -> DefM a -> (a, VNameSource, Seq.Seq ValBind) runDefM src (DefM m) = runRWS m mempty src collectFuns :: DefM a -> DefM (a, Seq.Seq ValBind) collectFuns m = pass $ do (x, decs) <- listen m return ((x, decs), const mempty) -- | Looks up the associated static value for a given name in the environment. lookupVar :: SrcLoc -> VName -> DefM StaticVal lookupVar loc x = do env <- askEnv case M.lookup x env of Just sv -> return sv Nothing -- If the variable is unknown, it may refer to the 'intrinsics' -- module, which we will have to treat specially. | baseTag x <= maxIntrinsicTag -> return IntrinsicSV | otherwise -> error $ "Variable " ++ pretty x ++ " at " ++ locStr loc ++ " is out of scope." -- | Defunctionalization of an expression. Returns the residual expression and -- the associated static value in the defunctionalization monad. defuncExp :: Exp -> DefM (Exp, StaticVal) defuncExp e@Literal{} = return (e, Dynamic $ typeOf e) defuncExp e@IntLit{} = return (e, Dynamic $ typeOf e) defuncExp e@FloatLit{} = return (e, Dynamic $ typeOf e) defuncExp (Parens e loc) = do (e', sv) <- defuncExp e return (Parens e' loc, sv) defuncExp (QualParens qn e loc) = do (e', sv) <- defuncExp e return (QualParens qn e' loc, sv) defuncExp (TupLit es loc) = do (es', svs) <- unzip <$> mapM defuncExp es return (TupLit es' loc, RecordSV $ zip fields svs) where fields = map (nameFromString . show) [(1 :: Int) ..] defuncExp (RecordLit fs loc) = do (fs', names_svs) <- unzip <$> mapM defuncField fs return (RecordLit fs' loc, RecordSV names_svs) where defuncField (RecordFieldExplicit vn e loc') = do (e', sv) <- defuncExp e return (RecordFieldExplicit vn e' loc', (vn, sv)) defuncField (RecordFieldImplicit vn _ loc') = do sv <- lookupVar loc' vn case sv of -- If the implicit field refers to a dynamic function, we -- convert it to an explicit field with a record closing over -- the environment and bind the corresponding static value. DynamicFun (e, sv') _ -> let vn' = baseName vn in return (RecordFieldExplicit vn' e loc', (vn', sv')) -- The field may refer to a functional expression, so we get the -- type from the static value and not the one from the AST. _ -> let tp = Info $ typeFromSV sv in return (RecordFieldImplicit vn tp loc', (baseName vn, sv)) defuncExp (ArrayLit es t@(Info t') loc) = do es' <- mapM defuncExp' es return (ArrayLit es' t loc, Dynamic t') defuncExp (Range e1 me incl t@(Info t') loc) = do e1' <- defuncExp' e1 me' <- mapM defuncExp' me incl' <- mapM defuncExp' incl return (Range e1' me' incl' t loc, Dynamic t') defuncExp e@(Var qn _ loc) = do sv <- lookupVar loc (qualLeaf qn) case sv of -- If the variable refers to a dynamic function, we return its closure -- representation (i.e., a record expression capturing the free variables -- and a 'LambdaSV' static value) instead of the variable itself. DynamicFun closure _ -> return closure -- Intrinsic functions used as variables are eta-expanded, so we -- can get rid of them. IntrinsicSV -> do (pats, body, tp) <- etaExpand e defuncExp $ Lambda [] pats body Nothing (Info (mempty, tp)) noLoc _ -> let tp = typeFromSV sv in return (Var qn (Info (vacuousShapeAnnotations tp)) loc, sv) defuncExp (Ascript e0 tydecl loc) | orderZero (typeOf e0) = do (e0', sv) <- defuncExp e0 return (Ascript e0' tydecl loc, sv) | otherwise = defuncExp e0 defuncExp (LetPat tparams pat e1 e2 loc) = do let env_dim = envFromShapeParams tparams (e1', sv1) <- localEnv env_dim $ defuncExp e1 let env = matchPatternSV pat sv1 pat' = updatePattern pat sv1 (e2', sv2) <- localEnv (env <> env_dim) $ defuncExp e2 return (LetPat tparams pat' e1' e2' loc, sv2) defuncExp (LetFun vn (dims, pats, _, rettype@(Info ret), e1) e2 loc) = do let env_dim = envFromShapeParams dims (pats', e1', sv1) <- localEnv env_dim $ defuncLet dims pats e1 rettype (e2', sv2) <- extendEnv vn sv1 $ defuncExp e2 case pats' of [] -> let t1 = combineTypeShapes (fromStruct ret) $ vacuousShapeAnnotations $ typeOf e1' in return (LetPat dims (Id vn (Info t1) noLoc) e1' e2' loc, sv2) _:_ -> let t1 = combineTypeShapes ret $ vacuousShapeAnnotations . toStruct $ typeOf e1' in return (LetFun vn (dims, pats', Nothing, Info t1, e1') e2' loc, sv2) defuncExp (If e1 e2 e3 tp loc) = do (e1', _ ) <- defuncExp e1 (e2', sv) <- defuncExp e2 (e3', _ ) <- defuncExp e3 return (If e1' e2' e3' tp loc, sv) defuncExp e@Apply{} = defuncApply 0 e defuncExp (Negate e0 loc) = do (e0', sv) <- defuncExp e0 return (Negate e0' loc, sv) defuncExp e@(Lambda tparams pats e0 decl (Info (closure, ret)) loc) = do when (any isTypeParam tparams) $ error $ "Received a lambda with type parameters at " ++ locStr loc ++ ", but the defunctionalizer expects a monomorphic input program." -- Extract the first parameter of the lambda and "push" the -- remaining ones (if there are any) into the body of the lambda. let (dims, pat, ret', e0') = case pats of [] -> error "Received a lambda with no parameters." [pat'] -> (map typeParamName tparams, pat', ret, e0) (pat' : pats') -> -- Split shape parameters into those that are determined by -- the first pattern, and those that are determined by later -- patterns. let bound_by_pat = (`S.member` patternDimNames pat') . typeParamName (pat_dims, rest_dims) = partition bound_by_pat tparams in (map typeParamName pat_dims, pat', foldFunType (map (toStruct . patternPatternType) pats') ret, Lambda rest_dims pats' e0 decl (Info (closure, ret)) loc) -- Construct a record literal that closes over the environment of -- the lambda. Closed-over 'DynamicFun's are converted to their -- closure representation. env <- restrictEnvTo (freeVars e) let (fields, env') = unzip $ map closureFromDynamicFun $ M.toList env return (RecordLit fields loc, LambdaSV dims pat ret' e0' $ M.fromList env') where closureFromDynamicFun (vn, DynamicFun (clsr_env, sv) _) = let name = nameFromString $ pretty vn in (RecordFieldExplicit name clsr_env noLoc, (vn, sv)) closureFromDynamicFun (vn, sv) = let name = nameFromString $ pretty vn tp' = vacuousShapeAnnotations $ typeFromSV sv in (RecordFieldExplicit name (Var (qualName vn) (Info tp') noLoc) noLoc, (vn, sv)) -- Operator sections are expected to be converted to lambda-expressions -- by the monomorphizer, so they should no longer occur at this point. defuncExp OpSection{} = error "defuncExp: unexpected operator section." defuncExp OpSectionLeft{} = error "defuncExp: unexpected operator section." defuncExp OpSectionRight{} = error "defuncExp: unexpected operator section." defuncExp ProjectSection{} = error "defuncExp: unexpected projection section." defuncExp IndexSection{} = error "defuncExp: unexpected projection section." defuncExp (DoLoop tparams pat e1 form e3 loc) = do let env_dim = envFromShapeParams tparams (e1', sv1) <- defuncExp e1 let env1 = matchPatternSV pat sv1 (form', env2) <- case form of For v e2 -> do e2' <- defuncExp' e2 return (For v e2', envFromIdent v) ForIn pat2 e2 -> do e2' <- defuncExp' e2 return (ForIn pat2 e2', envFromPattern pat2) While e2 -> do e2' <- localEnv (env1 <> env_dim) $ defuncExp' e2 return (While e2', mempty) (e3', sv) <- localEnv (env1 <> env2 <> env_dim) $ defuncExp e3 return (DoLoop tparams pat e1' form' e3' loc, sv) where envFromIdent (Ident vn (Info tp) _) = M.singleton vn $ Dynamic tp -- We handle BinOps by turning them into ordinary function applications. defuncExp (BinOp qn (Info t) (e1, Info pt1) (e2, Info pt2) (Info ret) loc) = defuncExp $ Apply (Apply (Var qn (Info t) loc) e1 (Info (diet pt1)) (Info (Arrow mempty Nothing (fromStruct pt2) ret)) loc) e2 (Info (diet pt2)) (Info ret) loc defuncExp (Project vn e0 tp@(Info tp') loc) = do (e0', sv0) <- defuncExp e0 case sv0 of RecordSV svs -> case lookup vn svs of Just sv -> return (Project vn e0' (Info $ typeFromSV sv) loc, sv) Nothing -> error "Invalid record projection." Dynamic _ -> return (Project vn e0' tp loc, Dynamic tp') _ -> error $ "Projection of an expression with static value " ++ show sv0 defuncExp (LetWith id1 id2 idxs e1 body loc) = do e1' <- defuncExp' e1 sv1 <- lookupVar (identSrcLoc id2) $ identName id2 idxs' <- mapM defuncDimIndex idxs (body', sv) <- extendEnv (identName id1) sv1 $ defuncExp body return (LetWith id1 id2 idxs' e1' body' loc, sv) defuncExp expr@(Index e0 idxs info loc) = do e0' <- defuncExp' e0 idxs' <- mapM defuncDimIndex idxs return (Index e0' idxs' info loc, Dynamic $ typeOf expr) defuncExp (Update e1 idxs e2 loc) = do (e1', sv) <- defuncExp e1 idxs' <- mapM defuncDimIndex idxs e2' <- defuncExp' e2 return (Update e1' idxs' e2' loc, sv) -- Note that we might change the type of the record field here. This -- is not permitted in the type checker due to problems with type -- inference, but it actually works fine. defuncExp (RecordUpdate e1 fs e2 _ loc) = do (e1', sv1) <- defuncExp e1 (e2', sv2) <- defuncExp e2 let sv = staticField sv1 sv2 fs return (RecordUpdate e1' fs e2' (Info $ vacuousShapeAnnotations $ typeFromSV sv1) loc, sv) where staticField (RecordSV svs) sv2 (f:fs') = case lookup f svs of Just sv -> RecordSV $ (f, staticField sv sv2 fs') : filter ((/=f) . fst) svs Nothing -> error "Invalid record projection." staticField (Dynamic t@Record{}) sv2 fs'@(_:_) = staticField (svFromType t) sv2 fs' staticField _ sv2 _ = sv2 defuncExp e@(Map fun arr t loc) = do fun' <- defuncSoacExp fun arr' <- defuncExp' arr return (Map fun' arr' t loc, Dynamic $ typeOf e) defuncExp e@(Reduce comm fun ne arr loc) = do fun' <- defuncSoacExp fun ne' <- defuncExp' ne arr' <- defuncExp' arr return (Reduce comm fun' ne' arr' loc, Dynamic $ typeOf e) defuncExp e@(GenReduce hist op ne bfun img loc) = do hist' <- defuncExp' hist op' <- defuncSoacExp op ne' <- defuncExp' ne bfun' <- defuncSoacExp bfun img' <- defuncExp' img return (GenReduce hist' op' ne' bfun' img' loc, Dynamic $ typeOf e) defuncExp e@(Scan fun ne arr loc) = (,) <$> (Scan <$> defuncSoacExp fun <*> defuncExp' ne <*> defuncExp' arr <*> pure loc) <*> pure (Dynamic $ typeOf e) defuncExp e@(Filter fun arr loc) = do fun' <- defuncSoacExp fun arr' <- defuncExp' arr return (Filter fun' arr' loc, Dynamic $ typeOf e) defuncExp e@(Partition k fun arr loc) = do fun' <- defuncSoacExp fun arr' <- defuncExp' arr return (Partition k fun' arr' loc, Dynamic $ typeOf e) defuncExp e@(Stream form lam arr loc) = do form' <- case form of MapLike _ -> return form RedLike so comm e' -> RedLike so comm <$> defuncSoacExp e' lam' <- defuncSoacExp lam arr' <- defuncExp' arr return (Stream form' lam' arr' loc, Dynamic $ typeOf e) defuncExp (Unsafe e1 loc) = do (e1', sv) <- defuncExp e1 return (Unsafe e1' loc, sv) defuncExp (Assert e1 e2 desc loc) = do (e1', _) <- defuncExp e1 (e2', sv) <- defuncExp e2 return (Assert e1' e2' desc loc, sv) defuncExp e@VConstr0{} = return (e, Dynamic $ typeOf e) defuncExp (Match e cs t loc) = do (e', sv) <- defuncExp e csPairs <- mapM (defuncCase sv) cs let cs' = map fst csPairs sv' = case csPairs of [] -> error "Matches must always have at least one case." c':_ -> snd c' return (Match e' cs' t loc, sv') -- | Same as 'defuncExp', except it ignores the static value. defuncExp' :: Exp -> DefM Exp defuncExp' = fmap fst . defuncExp defuncCase :: StaticVal -> Case -> DefM (Case, StaticVal) defuncCase sv (CasePat p e loc) = do let p' = updatePattern p sv env = matchPatternSV p sv (e', sv') <- localEnv env $ defuncExp e return (CasePat p' e' loc, sv') -- | Defunctionalize the function argument to a SOAC by eta-expanding if -- necessary and then defunctionalizing the body of the introduced lambda. defuncSoacExp :: Exp -> DefM Exp defuncSoacExp e@OpSection{} = return e defuncSoacExp e@OpSectionLeft{} = return e defuncSoacExp e@OpSectionRight{} = return e defuncSoacExp e@ProjectSection{} = return e defuncSoacExp (Parens e loc) = Parens <$> defuncSoacExp e <*> pure loc defuncSoacExp (Lambda tparams params e0 decl tp loc) = do let env_dim = envFromShapeParams tparams env = foldMap envFromPattern params e0' <- localEnv (env <> env_dim) $ defuncSoacExp e0 return $ Lambda tparams params e0' decl tp loc defuncSoacExp e | Arrow{} <- typeOf e = do (pats, body, tp) <- etaExpand e let env = foldMap envFromPattern pats body' <- localEnv env $ defuncExp' body return $ Lambda [] pats body' Nothing (Info (mempty, tp)) noLoc | otherwise = defuncExp' e etaExpand :: Exp -> DefM ([Pattern], Exp, StructType) etaExpand e = do let (ps, ret) = getType $ typeOf e (pats, vars) <- fmap unzip . forM ps $ \t -> do x <- newNameFromString "x" let t' = vacuousShapeAnnotations t return (Id x (Info t') noLoc, Var (qualName x) (Info t') noLoc) let ps_st = map vacuousShapeAnnotations ps e' = foldl' (\e1 (e2, t2, argtypes) -> Apply e1 e2 (Info $ diet t2) (Info (foldFunType argtypes (vacuousShapeAnnotations ret))) noLoc) e $ zip3 vars ps (drop 1 $ tails ps_st) return (pats, e', vacuousShapeAnnotations $ toStruct ret) where getType (Arrow _ _ t1 t2) = let (ps, r) = getType t2 in (t1 : ps, r) getType t = ([], t) -- | Defunctionalize an indexing of a single array dimension. defuncDimIndex :: DimIndexBase Info VName -> DefM (DimIndexBase Info VName) defuncDimIndex (DimFix e1) = DimFix . fst <$> defuncExp e1 defuncDimIndex (DimSlice me1 me2 me3) = DimSlice <$> defunc' me1 <*> defunc' me2 <*> defunc' me3 where defunc' = mapM defuncExp' -- | Defunctionalize a let-bound function, while preserving parameters -- that have order 0 types (i.e., non-functional). defuncLet :: [TypeParam] -> [Pattern] -> Exp -> Info StructType -> DefM ([Pattern], Exp, StaticVal) defuncLet dims ps@(pat:pats) body (Info rettype) | patternOrderZero pat = do let env = envFromPattern pat bound_by_pat = (`S.member` patternDimNames pat) . typeParamName (_pat_dims, rest_dims) = partition bound_by_pat dims (pats', body', sv) <- localEnv env $ defuncLet rest_dims pats body (Info rettype) closure <- defuncExp $ Lambda dims ps body Nothing (Info (mempty, rettype)) noLoc return (pat : pats', body', DynamicFun closure sv) | otherwise = do (e, sv) <- defuncExp $ Lambda dims ps body Nothing (Info (mempty, rettype)) noLoc return ([], e, sv) defuncLet _ [] body (Info rettype) = do (body', sv) <- defuncExp body return ([], body', imposeType sv rettype ) where imposeType Dynamic{} t = Dynamic $ fromStruct $ removeShapeAnnotations t imposeType (RecordSV fs1) (Record fs2) = RecordSV $ M.toList $ M.intersectionWith imposeType (M.fromList fs1) fs2 imposeType sv _ = sv -- | Defunctionalize an application expression at a given depth of application. -- Calls to dynamic (first-order) functions are preserved at much as possible, -- but a new lifted function is created if a dynamic function is only partially -- applied. defuncApply :: Int -> Exp -> DefM (Exp, StaticVal) defuncApply depth e@(Apply e1 e2 d t@(Info ret) loc) = do let (argtypes, _) = unfoldFunType ret (e1', sv1) <- defuncApply (depth+1) e1 (e2', sv2) <- defuncExp e2 let e' = Apply e1' e2' d t loc case sv1 of LambdaSV dims pat e0_t e0 closure_env -> do let env' = matchPatternSV pat sv2 env_dim = envFromDimNames dims (e0', sv) <- localNewEnv (env' <> closure_env <> env_dim) $ defuncExp e0 let closure_pat = buildEnvPattern closure_env pat' = updatePattern pat sv2 -- Lift lambda to top-level function definition. We put in -- a lot of effort to try to infer the uniqueness attributes -- of the lifted function, but this is ultimately all a sham -- and a hack. There is some piece we're missing. let params = [closure_pat, pat'] params_for_rettype = params ++ svParams sv1 ++ svParams sv2 svParams (LambdaSV _ sv_pat _ _ _) = [sv_pat] svParams _ = [] rettype = buildRetType closure_env params_for_rettype e0_t $ typeOf e0' -- Embed some information about the original function -- into the name of the lifted function, to make the -- result slightly more human-readable. liftedName i (Var f _ _) = "lifted_" ++ show i ++ "_" ++ baseString (qualLeaf f) liftedName i (Apply f _ _ _ _) = liftedName (i+1) f liftedName _ _ = "lifted" fname <- newNameFromString $ liftedName (0::Int) e1 liftValDec fname rettype dims params e0' let t1 = vacuousShapeAnnotations . toStruct $ typeOf e1' t2 = vacuousShapeAnnotations . toStruct $ typeOf e2' fname' = qualName fname return (Parens (Apply (Apply (Var fname' (Info (Arrow mempty Nothing (fromStruct t1) $ Arrow mempty Nothing (fromStruct t2) rettype)) loc) e1' (Info Observe) (Info $ Arrow mempty Nothing (fromStruct t2) rettype) loc) e2' d (Info rettype) loc) noLoc, sv) -- If e1 is a dynamic function, we just leave the application in place, -- but we update the types since it may be partially applied or return -- a higher-order term. DynamicFun _ sv -> let (argtypes', rettype) = dynamicFunType sv argtypes apply_e = Apply e1' e2' d (Info $ foldFunType argtypes' rettype `setAliases` aliases ret) loc in return (apply_e, sv) -- Propagate the 'IntrinsicsSV' until we reach the outermost application, -- where we construct a dynamic static value with the appropriate type. IntrinsicSV | depth == 0 -> return (e', Dynamic $ typeOf e) | otherwise -> return (e', IntrinsicSV) _ -> error $ "Application of an expression that is neither a static lambda " ++ "nor a dynamic function, but has static value: " ++ show sv1 defuncApply depth e@(Var qn (Info t) loc) = do let (argtypes, _) = unfoldFunType t sv <- lookupVar loc (qualLeaf qn) case sv of DynamicFun _ _ | fullyApplied sv depth -> -- We still need to update the types in case the dynamic -- function returns a higher-order term. let (argtypes', rettype) = dynamicFunType sv argtypes in return (Var qn (Info (foldFunType argtypes' rettype)) loc, sv) | otherwise -> do fname <- newName $ qualLeaf qn let (dims, pats, e0, sv') = liftDynFun sv depth (argtypes', rettype) = dynamicFunType sv' argtypes liftValDec fname (fromStruct rettype) dims pats e0 return (Var (qualName fname) (Info (foldFunType argtypes' $ fromStruct rettype)) loc, sv') IntrinsicSV -> return (e, IntrinsicSV) _ -> return (Var qn (Info (vacuousShapeAnnotations $ typeFromSV sv)) loc, sv) defuncApply _ expr = defuncExp expr -- | Check if a 'StaticVal' and a given application depth corresponds -- to a fully applied dynamic function. fullyApplied :: StaticVal -> Int -> Bool fullyApplied (DynamicFun _ sv) depth | depth == 0 = False | depth > 0 = fullyApplied sv (depth-1) fullyApplied _ _ = True -- | Converts a dynamic function 'StaticVal' into a list of -- dimensions, a list of parameters, a function body, and the -- appropriate static value for applying the function at the given -- depth of partial application. liftDynFun :: StaticVal -> Int -> ([VName], [Pattern], Exp, StaticVal) liftDynFun (DynamicFun (e, sv) _) 0 = ([], [], e, sv) liftDynFun (DynamicFun clsr@(_, LambdaSV dims pat _ _ _) sv) d | d > 0 = let (dims', pats, e', sv') = liftDynFun sv (d-1) in (dims ++ dims', pat : pats, e', DynamicFun clsr sv') liftDynFun sv _ = error $ "Tried to lift a StaticVal " ++ show sv ++ ", but expected a dynamic function." -- | Converts a pattern to an environment that binds the individual names of the -- pattern to their corresponding types wrapped in a 'Dynamic' static value. envFromPattern :: Pattern -> Env envFromPattern pat = case pat of TuplePattern ps _ -> foldMap envFromPattern ps RecordPattern fs _ -> foldMap (envFromPattern . snd) fs PatternParens p _ -> envFromPattern p Id vn (Info t) _ -> M.singleton vn $ Dynamic $ removeShapeAnnotations t Wildcard _ _ -> mempty PatternAscription p _ _ -> envFromPattern p PatternLit{} -> mempty -- | Create an environment that binds the shape parameters. envFromShapeParams :: [TypeParamBase VName] -> Env envFromShapeParams = envFromDimNames . map dim where dim (TypeParamDim vn _) = vn dim tparam = error $ "The defunctionalizer expects a monomorphic input program,\n" ++ "but it received a type parameter " ++ pretty tparam ++ " at " ++ locStr (srclocOf tparam) ++ "." envFromDimNames :: [VName] -> Env envFromDimNames = M.fromList . flip zip (repeat $ Dynamic $ Prim $ Signed Int32) -- | Create a new top-level value declaration with the given function name, -- return type, list of parameters, and body expression. liftValDec :: VName -> PatternType -> [VName] -> [Pattern] -> Exp -> DefM () liftValDec fname rettype dims pats body = tell $ Seq.singleton dec where dims' = map (flip TypeParamDim noLoc) dims rettype_st = vacuousShapeAnnotations $ toStruct rettype dec = ValBind { valBindEntryPoint = False , valBindName = fname , valBindRetDecl = Nothing , valBindRetType = Info rettype_st , valBindTypeParams = dims' , valBindParams = pats , valBindBody = body , valBindDoc = Nothing , valBindLocation = noLoc } -- | Given a closure environment, construct a record pattern that -- binds the closed over variables. buildEnvPattern :: Env -> Pattern buildEnvPattern env = RecordPattern (map buildField $ M.toList env) noLoc where buildField (vn, sv) = let tp = vacuousShapeAnnotations (typeFromSV sv) in (nameFromString (pretty vn), Id vn (Info tp) noLoc) -- | Given a closure environment pattern and the type of a term, -- construct the type of that term, where uniqueness is set to -- `Nonunique` for those arrays that are bound in the environment or -- pattern (except if they are unique there). This ensures that a -- lifted function can create unique arrays as long as they do not -- alias any of its parameters. XXX: it is not clear that this is a -- sufficient property, unfortunately. buildRetType :: Env -> [Pattern] -> StructType -> CompType -> PatternType buildRetType env pats = comb where bound = foldMap oneName (M.keys env) <> foldMap patternVars pats boundAsUnique v = maybe False (unique . unInfo . identType) $ find ((==v) . identName) $ S.toList $ foldMap patIdentSet pats problematic v = (v `member` bound) && not (boundAsUnique v) comb (Record fs_annot) (Record fs_got) = Record $ M.intersectionWith comb fs_annot fs_got comb Arrow{} t = vacuousShapeAnnotations $ descend t comb got et = descend $ fromStruct got `setUniqueness` uniqueness et `setAliases` aliases et descend t@Array{} | any (problematic . aliasVar) (aliases t) = t `setUniqueness` Nonunique descend (Record t) = Record $ fmap descend t descend t = t -- | Compute the corresponding type for a given static value. typeFromSV :: StaticVal -> CompType typeFromSV (Dynamic tp) = tp typeFromSV (LambdaSV _ _ _ _ env) = typeFromEnv env typeFromSV (RecordSV ls) = Record $ M.fromList $ map (fmap typeFromSV) ls typeFromSV (DynamicFun (_, sv) _) = typeFromSV sv typeFromSV IntrinsicSV = error $ "Tried to get the type from the " ++ "static value of an intrinsic." typeFromEnv :: Env -> CompType typeFromEnv = Record . M.fromList . map (bimap (nameFromString . pretty) typeFromSV) . M.toList -- | Construct the type for a fully-applied dynamic function from its -- static value and the original types of its arguments. dynamicFunType :: StaticVal -> [PatternType] -> ([PatternType], PatternType) dynamicFunType (DynamicFun _ sv) (p:ps) = let (ps', ret) = dynamicFunType sv ps in (p : ps', ret) dynamicFunType sv _ = ([], vacuousShapeAnnotations $ typeFromSV sv) -- | Match a pattern with its static value. Returns an environment with -- the identifier components of the pattern mapped to the corresponding -- subcomponents of the static value. matchPatternSV :: PatternBase Info VName -> StaticVal -> Env matchPatternSV (TuplePattern ps _) (RecordSV ls) = mconcat $ zipWith (\p (_, sv) -> matchPatternSV p sv) ps ls matchPatternSV (RecordPattern ps _) (RecordSV ls) | ps' <- sortOn fst ps, ls' <- sortOn fst ls, map fst ps' == map fst ls' = mconcat $ zipWith (\(_, p) (_, sv) -> matchPatternSV p sv) ps' ls' matchPatternSV (PatternParens pat _) sv = matchPatternSV pat sv matchPatternSV (Id vn (Info t) _) sv = -- When matching a pattern with a zero-order STaticVal, the type of -- the pattern wins out. This is important when matching a -- nonunique pattern with a unique value. if orderZeroSV sv then M.singleton vn $ Dynamic $ removeShapeAnnotations t else M.singleton vn sv matchPatternSV (Wildcard _ _) _ = mempty matchPatternSV (PatternAscription pat _ _) sv = matchPatternSV pat sv matchPatternSV PatternLit{} _ = mempty matchPatternSV pat (Dynamic t) = matchPatternSV pat $ svFromType t matchPatternSV pat sv = error $ "Tried to match pattern " ++ pretty pat ++ " with static value " ++ show sv ++ "." orderZeroSV :: StaticVal -> Bool orderZeroSV Dynamic{} = True orderZeroSV (RecordSV fields) = all (orderZeroSV . snd) fields orderZeroSV _ = False -- | Given a pattern and the static value for the defunctionalized argument, -- update the pattern to reflect the changes in the types. updatePattern :: Pattern -> StaticVal -> Pattern updatePattern (TuplePattern ps loc) (RecordSV svs) = TuplePattern (zipWith updatePattern ps $ map snd svs) loc updatePattern (RecordPattern ps loc) (RecordSV svs) | ps' <- sortOn fst ps, svs' <- sortOn fst svs = RecordPattern (zipWith (\(n, p) (_, sv) -> (n, updatePattern p sv)) ps' svs') loc updatePattern (PatternParens pat loc) sv = PatternParens (updatePattern pat sv) loc updatePattern pat@(Id vn (Info tp) loc) sv | orderZero tp = pat | otherwise = Id vn (Info . vacuousShapeAnnotations $ typeFromSV sv `setUniqueness` Nonunique) loc updatePattern pat@(Wildcard (Info tp) loc) sv | orderZero tp = pat | otherwise = Wildcard (Info . vacuousShapeAnnotations $ typeFromSV sv) loc updatePattern (PatternAscription pat tydecl loc) sv | orderZero . unInfo $ expandedType tydecl = PatternAscription (updatePattern pat sv) tydecl loc | otherwise = updatePattern pat sv updatePattern p@PatternLit{} _ = p updatePattern pat (Dynamic t) = updatePattern pat (svFromType t) updatePattern pat sv = error $ "Tried to update pattern " ++ pretty pat ++ "to reflect the static value " ++ show sv -- | Convert a record (or tuple) type to a record static value. This is used for -- "unwrapping" tuples and records that are nested in 'Dynamic' static values. svFromType :: CompType -> StaticVal svFromType (Record fs) = RecordSV . M.toList $ M.map svFromType fs svFromType t = Dynamic t -- A set of names where we also track uniqueness. newtype NameSet = NameSet (M.Map VName Uniqueness) instance Semigroup NameSet where NameSet x <> NameSet y = NameSet $ M.unionWith max x y instance Monoid NameSet where mempty = NameSet mempty without :: NameSet -> NameSet -> NameSet without (NameSet x) (NameSet y) = NameSet $ x `M.difference` y member :: VName -> NameSet -> Bool member v (NameSet m) = v `M.member` m ident :: Ident -> NameSet ident v = NameSet $ M.singleton (identName v) (uniqueness $ unInfo $ identType v) oneName :: VName -> NameSet oneName v = NameSet $ M.singleton v Nonunique names :: S.Set VName -> NameSet names = foldMap oneName -- | Compute the set of free variables of an expression. freeVars :: Exp -> NameSet freeVars expr = case expr of Literal{} -> mempty IntLit{} -> mempty FloatLit{} -> mempty Parens e _ -> freeVars e QualParens _ e _ -> freeVars e TupLit es _ -> foldMap freeVars es RecordLit fs _ -> foldMap freeVarsField fs where freeVarsField (RecordFieldExplicit _ e _) = freeVars e freeVarsField (RecordFieldImplicit vn t _) = ident $ Ident vn t noLoc ArrayLit es _ _ -> foldMap freeVars es Range e me incl _ _ -> freeVars e <> foldMap freeVars me <> foldMap freeVars incl Var qn (Info t) _ -> NameSet $ M.singleton (qualLeaf qn) $ uniqueness t Ascript e t _ -> freeVars e <> names (typeDimNames $ unInfo $ expandedType t) LetPat _ pat e1 e2 _ -> freeVars e1 <> ((names (patternDimNames pat) <> freeVars e2) `without` patternVars pat) LetFun vn (_, pats, _, _, e1) e2 _ -> ((freeVars e1 <> names (foldMap patternDimNames pats)) `without` foldMap patternVars pats) <> (freeVars e2 `without` oneName vn) If e1 e2 e3 _ _ -> freeVars e1 <> freeVars e2 <> freeVars e3 Apply e1 e2 _ _ _ -> freeVars e1 <> freeVars e2 Negate e _ -> freeVars e Lambda tps pats e0 _ _ _ -> (names (foldMap patternDimNames pats) <> freeVars e0) `without` (foldMap patternVars pats <> mconcat (map (oneName . typeParamName) tps)) OpSection{} -> mempty OpSectionLeft _ _ e _ _ _ -> freeVars e OpSectionRight _ _ e _ _ _ -> freeVars e ProjectSection{} -> mempty IndexSection idxs _ _ -> foldMap freeDimIndex idxs DoLoop _ pat e1 form e3 _ -> let (e2fv, e2ident) = formVars form in freeVars e1 <> e2fv <> (freeVars e3 `without` (patternVars pat <> e2ident)) where formVars (For v e2) = (freeVars e2, ident v) formVars (ForIn p e2) = (freeVars e2, patternVars p) formVars (While e2) = (freeVars e2, mempty) BinOp qn _ (e1, _) (e2, _) _ _ -> oneName (qualLeaf qn) <> freeVars e1 <> freeVars e2 Project _ e _ _ -> freeVars e LetWith id1 id2 idxs e1 e2 _ -> ident id2 <> foldMap freeDimIndex idxs <> freeVars e1 <> (freeVars e2 `without` ident id1) Index e idxs _ _ -> freeVars e <> foldMap freeDimIndex idxs Update e1 idxs e2 _ -> freeVars e1 <> foldMap freeDimIndex idxs <> freeVars e2 RecordUpdate e1 _ e2 _ _ -> freeVars e1 <> freeVars e2 Map e1 e2 _ _ -> freeVars e1 <> freeVars e2 Reduce _ e1 e2 e3 _ -> freeVars e1 <> freeVars e2 <> freeVars e3 GenReduce e1 e2 e3 e4 e5 _ -> freeVars e1 <> freeVars e2 <> freeVars e3 <> freeVars e4 <> freeVars e5 Scan e1 e2 e3 _ -> freeVars e1 <> freeVars e2 <> freeVars e3 Filter e1 e2 _ -> freeVars e1 <> freeVars e2 Partition _ e1 e2 _ -> freeVars e1 <> freeVars e2 Stream form e1 e2 _ -> freeInForm form <> freeVars e1 <> freeVars e2 where freeInForm (RedLike _ _ e) = freeVars e freeInForm _ = mempty Unsafe e _ -> freeVars e Assert e1 e2 _ _ -> freeVars e1 <> freeVars e2 VConstr0{} -> mempty Match e cs _ _ -> freeVars e <> foldMap caseFV cs where caseFV (CasePat p eCase _) = (names (patternDimNames p) <> freeVars eCase) `without` patternVars p freeDimIndex :: DimIndexBase Info VName -> NameSet freeDimIndex (DimFix e) = freeVars e freeDimIndex (DimSlice me1 me2 me3) = foldMap (foldMap freeVars) [me1, me2, me3] -- | Extract all the variable names bound in a pattern. patternVars :: Pattern -> NameSet patternVars = mconcat . map ident . S.toList . patIdentSet -- | Combine the shape information of types as much as possible. The first -- argument is the orignal type and the second is the type of the transformed -- expression. This is necessary since the original type may contain additional -- information (e.g., shape restrictions) from the user given annotation. combineTypeShapes :: (Monoid as, ArrayDim dim) => TypeBase dim as -> TypeBase dim as -> TypeBase dim as combineTypeShapes (Record ts1) (Record ts2) | M.keys ts1 == M.keys ts2 = Record $ M.map (uncurry combineTypeShapes) (M.intersectionWith (,) ts1 ts2) combineTypeShapes (Array als1 u1 et1 shape1) (Array als2 _u2 et2 shape2) | Just new_shape <- unifyShapes shape1 shape2 = Array (als1<>als2) u1 (combineElemTypeInfo et1 et2) new_shape combineTypeShapes _ new_tp = new_tp combineElemTypeInfo :: ArrayDim dim => ArrayElemTypeBase dim -> ArrayElemTypeBase dim -> ArrayElemTypeBase dim combineElemTypeInfo (ArrayRecordElem et1) (ArrayRecordElem et2) = ArrayRecordElem $ M.map (uncurry combineRecordArrayTypeInfo) (M.intersectionWith (,) et1 et2) combineElemTypeInfo _ new_tp = new_tp combineRecordArrayTypeInfo :: ArrayDim dim => RecordArrayElemTypeBase dim -> RecordArrayElemTypeBase dim -> RecordArrayElemTypeBase dim combineRecordArrayTypeInfo (RecordArrayElem et1) (RecordArrayElem et2) = RecordArrayElem $ combineElemTypeInfo et1 et2 combineRecordArrayTypeInfo (RecordArrayArrayElem et1 shape1) (RecordArrayArrayElem et2 shape2) | Just new_shape <- unifyShapes shape1 shape2 = RecordArrayArrayElem (combineElemTypeInfo et1 et2) new_shape combineRecordArrayTypeInfo _ new_tp = new_tp -- | Defunctionalize a top-level value binding. Returns the -- transformed result as well as an environment that binds the name of -- the value binding to the static value of the transformed body. The -- boolean is true if the function is a 'DynamicFun'. defuncValBind :: ValBind -> DefM (ValBind, Env, Bool) -- Eta-expand entry points with a functional return type. defuncValBind (ValBind True name _ (Info rettype) tparams params body _ loc) | (rettype_ps, rettype') <- unfoldFunType rettype, not $ null rettype_ps = do (body_pats, body', _) <- etaExpand body -- FIXME: we should also handle non-constant size annotations -- here. defuncValBind $ ValBind True name Nothing (Info $ onlyConstantDims rettype') tparams (params <> body_pats) body' Nothing loc where onlyConstantDims = bimap onDim id onDim (ConstDim x) = ConstDim x onDim _ = AnyDim defuncValBind valbind@(ValBind _ name retdecl rettype tparams params body _ _) = do let env = envFromShapeParams tparams (params', body', sv) <- localEnv env $ defuncLet tparams params body rettype -- Remove any shape parameters that no longer occur in the value parameters. let dim_names = foldMap patternDimNames params' tparams' = filter ((`S.member` dim_names) . typeParamName) tparams let rettype' = vacuousShapeAnnotations . toStruct $ typeOf body' return ( valbind { valBindRetDecl = retdecl , valBindRetType = Info $ combineTypeShapes (unInfo rettype) rettype' , valBindTypeParams = tparams' , valBindParams = params' , valBindBody = body' } , M.singleton name sv , case sv of DynamicFun{} -> True _ -> False) -- | Defunctionalize a list of top-level declarations. defuncVals :: [ValBind] -> DefM (Seq.Seq ValBind) defuncVals [] = return mempty defuncVals (valbind : ds) = do ((valbind', env, dyn), defs) <- collectFuns $ defuncValBind valbind ds' <- localEnv env $ if dyn then isGlobal (valBindName valbind') $ defuncVals ds else defuncVals ds return $ defs <> Seq.singleton valbind' <> ds' -- | Transform a list of top-level value bindings. May produce new -- lifted function definitions, which are placed in front of the -- resulting list of declarations. transformProg :: MonadFreshNames m => [ValBind] -> m [ValBind] transformProg decs = modifyNameSource $ \namesrc -> let (decs', namesrc', liftedDecs) = runDefM namesrc $ defuncVals decs in (toList $ liftedDecs <> decs', namesrc')