```{-# LANGUAGE ParallelListComp #-}
-- |Stirling's approximation to the gamma function and utility functions for
-- selecting coefficients.
module Math.Gamma.Stirling (lnGammaStirling, cs, s, abs_s, terms) where

import qualified Data.Vector as V

-- |Convergent when Re(z) > 0.  The first argument is the c_n series to use
-- ('cs' is an ineffecient but generic definition of the full infinite series.
-- Some precomputed finite prefix of 'cs' should be fed to this function, the
-- length of which will determine the accuracy achieved.)
{-# INLINE lnGammaStirling #-}
lnGammaStirling :: Floating a => [a] -> a -> a
lnGammaStirling ks z
= (z - 0.5) * log z
- z
+ 0.5 * log (2*pi)
+ sum (zipWith (/) ks (risingPowers (z+1)))

{-# INLINE risingPowers #-}
risingPowers :: Num a => a -> [a]
risingPowers = scanl1 (*) . iterate (1+)

-- |The c_n series in the convergent version of Stirling's approximation given
-- on wikipedia at
-- http:\/\/en.wikipedia.org\/wiki\/Stirling%27s_approximation#A_convergent_version_of_Stirling.27s_formula
-- as fetched on 11 June 2010.
cs :: (Fractional a, Ord a) => [a]
cs = map c [1..]

c :: (Fractional a, Ord a) => Int -> a
c n = 0.5 * recip n' * sum [k' * fromInteger (abs_s n k) / ((k' + 1) * (k' + 2)) | k <- [1..n], let k' = fromIntegral k]
where n' = fromIntegral n

-- |The (signed) Stirling numbers of the first kind.
s :: Int -> Int -> Integer
s n k
| n < 0     = error "s n k: n < 0"
| k < 0     = error "s n k: k < 0"
| k > n     = error "s n k: k > n"
| otherwise = s' n k

where
table = [V.generate (i+1) \$ s' i | i <- [0..]]
s' 0 0 = 1
s' _ 0 = 0
s' n' k'
| n' == k'  = 1
| otherwise = s'' (n'-1) (k'-1) - (toInteger n'-1) * s'' (n'-1) k'
where
s'' n'' k'' = table !! n'' V.! k''

-- |The (unsigned) Stirling numbers of the first kind.
abs_s :: Int -> Int -> Integer
abs_s n k
| n < 0     = error "abs_s n k: n < 0"
| k < 0     = error "abs_s n k: k < 0"
| k > n     = error "abs_s n k: k > n"
| otherwise = abs_s' n k

where
table = [V.generate (n''+1) \$ \k'' -> abs_s' n'' k'' | n'' <- [0..]]
abs_s' 0 0 = 1
abs_s' _ 0 = 0
abs_s' n' k'
| n' == k'  = 1
| otherwise = abs_s'' (n'-1) (k'-1) + (toInteger n'-1) * abs_s'' (n'-1) k'
where
abs_s'' n'' k'' = table !! n'' V.! k''

-- |Compute the number of terms required to achieve a given precision for a
-- given value of z.  The mamimum will typically (always?) be around 1, and
-- seems to be more or less independent of the precision desired (though not
-- of the machine epsilon - essentially, near zero I think this method is
-- extremely numerically unstable).
terms :: (Num t, Floating a, Ord a) => a -> a -> t
terms prec z = stepsNeeded (eps z) (f z)
where
cs' = cs
f x = scanl1 (+) (zipWith (/) cs' (risingPowers (x+1)))
-- (eps is 0 at z=0.86639115674955 and z=2.087930091329227)
eps x = prec * abs ((x - 0.5) * log x - x + 0.5 * log (2*pi))
stepsNeeded e xs = go 1 xs
where
go n (x:y:zs)
| abs(x-y)<=e = n
| otherwise = go (n+1) (y:zs)
go n _ = n -- this case should be impossible
```