{-# LANGUAGE PolyKinds #-} {-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MonoLocalBinds #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} module Algebra.Linear where import Algebra.Classes import Prelude (cos,sin,Floating(..),Functor(..),Show(..),Eq(..),Int,fst,flip,($),Ord) import Control.Applicative import Data.Foldable import Data.Traversable import Control.Monad.State import Algebra.Category data VZero a = VZero deriving (Functor,Foldable,Traversable,Show,Eq,Ord) instance Applicative VZero where pure _ = VZero VZero <*> VZero = VZero data VNext v a = VNext !(v a) !a deriving (Functor,Foldable,Traversable,Show,Eq,Ord) instance Applicative v => Applicative (VNext v) where pure x = VNext (pure x) x VNext fs f <*> VNext xs x = VNext (fs <*> xs) (f x) type V1' = VNext VZero type V2' = VNext V1' type V3' = VNext V2' pattern V1' :: a -> V1' a pattern V1' x = VNext VZero x pattern V2' :: forall a. a -> a -> V2' a pattern V2' x y = VNext (V1' x) y pattern V3' :: forall a. a -> a -> a -> V3' a pattern V3' x y z = VNext (V2' x y) z -- | Make a Euclidean vector out of a traversable functor newtype Euclid f a = Euclid {fromEuclid :: f a} deriving (Functor,Foldable,Traversable,Show,Eq,Ord,Applicative) type V3 = Euclid V3' type V2 = Euclid V2' pattern V2 :: forall a. a -> a -> Euclid V2' a pattern V2 x y = Euclid (V2' x y) pattern V3 :: forall a. a -> a -> a -> Euclid V3' a pattern V3 x y z = Euclid (V3' x y z) instance (Applicative f,Additive a) => Additive (Euclid f a) where zero = pure zero x + y = (+) <$> x <*> y instance (Applicative f,AbelianAdditive a) => AbelianAdditive (Euclid f a) where instance (Applicative f,Group a) => Group (Euclid f a) where negate x = negate <$> x x - y = (-) <$> x <*> y instance (Applicative f,Module s a) => Module s (Euclid f a) where s *^ t = (s*^) <$> t pureMat :: (Applicative v, Applicative w) => s -> Mat s v w pureMat x = Mat (pure (pure x)) (>*<) :: (Applicative v, Applicative w) => Mat (a -> s) v w -> Mat a v w -> Mat s v w Mat f >*< Mat x = Mat (((<*>) <$> f) <*> x) (>$<) :: (Applicative v, Applicative w) => (a -> s) -> Mat a v w -> Mat s v w f >$< x = pureMat f >*< x instance (Applicative f,Applicative g,Additive a) => Additive (Mat a f g) where zero = pureMat zero x + y = (+) >$< x >*< y instance (Applicative f,Applicative g,AbelianAdditive a) => AbelianAdditive (Mat a f g) where instance (Applicative f,Applicative g,Group a) => Group (Mat a f g) where negate x = negate >$< x x - y = (-) >$< x >*< y instance (Applicative f, Applicative g,Module s a) => Module s (Mat a f g) where s *^ Mat t = Mat (((s*^) <$>) <$> t) class VectorSpace (Scalar v) v => InnerProdSpace v where type Scalar v dotProd :: v -> v -> Scalar v (⊙) :: Applicative v => Multiplicative s => v s -> v s -> v s x ⊙ y = (*) <$> x <*> y instance (Ring a, Field a, Applicative f, Foldable f) => InnerProdSpace (Euclid f a) where type Scalar (Euclid f a) = a dotProd x y = add (x ⊙ y) (·) :: InnerProdSpace v => v -> v -> Scalar v (·) = dotProd sqNorm :: InnerProdSpace v => v -> Scalar v sqNorm x = dotProd x x norm :: InnerProdSpace v => Floating (Scalar v) => v -> Scalar v norm = sqrt . sqNorm normalize :: Floating (Scalar v) => InnerProdSpace v => v -> v normalize v = recip (norm v) *^ v -- | Cross product https://en.wikipedia.org/wiki/Cross_product (×) :: Ring a => V3 a -> V3 a -> V3 a (V3 a1 a2 a3) × (V3 b1 b2 b3) = V3 (a2*b3 - a3*b2) (negate (a1*b3 - a3*b1)) (a1*b2 - a2*b1) index :: Applicative v => Traversable v => v Int index = fst (runState (sequenceA (pure increment)) zero) where increment = do x <- get; put (x+1); return x type SqMat v s = Mat s v v newtype Mat s w v = Mat {fromMat :: v (w s)} deriving Show instance Ring s => Category (Mat s) where type Con v = (Applicative v, Traversable v) (.) = matMul id = identity type Mat3x3 s = SqMat V3' s type Mat2x2 s = SqMat V2' s pattern Mat2x2 :: forall s. s -> s -> s -> s -> Mat s V2' V2' pattern Mat2x2 a b c d = Mat (V2' (V2' a b) (V2' c d)) pattern Mat3x3 :: forall s. s -> s -> s -> s -> s -> s -> s -> s -> s -> Mat s V3' V3' pattern Mat3x3 a b c d e f g h i = Mat (V3' (V3' a b c) (V3' d e f) (V3' g h i)) matVecMul :: (Foldable f1, Ring b, Applicative f1, Functor f2) => Mat b f1 f2 -> Euclid f1 b -> Euclid f2 b matVecMul (Mat m) v = Euclid (euclideanDotProd v <$> (Euclid <$> m)) where euclideanDotProd x y = add (Euclid x ⊙ Euclid y) rotation2d :: Floating a => a -> Mat2x2 a rotation2d θ = Mat $ V2' (V2' (cos θ) (-sin θ)) (V2' (sin θ) (cos θ)) -- >>> rotation2d (pi/2) -- Mat {fromMat = V2' (V2' 6.123233995736766e-17 (-1.0)) (V2' 1.0 6.123233995736766e-17)} crossProductMatrix :: Group a => V3 a -> Mat3x3 a crossProductMatrix (V3 a1 a2 a3) = Mat (V3' (V3' zero (negate a3) a2) (V3' a3 zero (negate a1)) (V3' (negate a2) a1 zero)) -- | Tensor product (⊗) :: (Applicative v, Applicative w, Multiplicative s) => Euclid w s -> Euclid v s -> Mat s w v Euclid v1 ⊗ Euclid v2 = flip (tensorWith (*)) v1 v2 tensorWith :: (Applicative v, Applicative w) => (s -> t -> u) -> w s -> v t -> Mat u v w tensorWith f v1 v2 = flip f >$< Mat (pure v2) >*< Mat (pure <$> v1) identity :: Traversable v => Ring s => Applicative v => SqMat v s identity = tensorWith (\x y -> if x == y then one else zero) index index diagonal :: Traversable v => Ring s => Applicative v => Euclid v s -> SqMat v s diagonal (Euclid v) = tensorWith (\x (y,a) -> if x == y then a else zero) index ((,) <$> index <*> v) -- | 3d rotation around given axis rotation3d :: Ring a => Floating a => a -> V3 a -> Mat3x3 a rotation3d θ u = cos θ *^ identity + sin θ *^ crossProductMatrix u + (1 - cos θ) *^ (u ⊗ u) rotationFromTo :: (Floating a, Module a a,Field a) => V3 a -> V3 a -> Mat3x3 a rotationFromTo from to = c *^ identity + s *^ crossProductMatrix v + (1-c) *^ (v ⊗ v) where y = to x = from v = x × y c = dotProd x y s = norm v transpose :: Applicative f => Traversable g => Mat a f g -> Mat a g f transpose = Mat . sequenceA . fromMat matMul' :: (Traversable u, Ring s, Applicative w, Applicative v, Applicative u) => Mat s v u -> Mat s u w -> Mat s v w matMul' (transpose -> Mat y) (Mat x) = tensorWith (\a b -> add (a ⊙ b)) x y matMul :: (Traversable u, Ring s, Applicative w, Applicative v, Applicative u) => Mat s u w -> Mat s v u -> Mat s v w matMul = flip matMul' -- >>> let t1 = rotation2d (1::Double) in matMul t1 (transpose t1) -- Mat {fromMat = V2' (V2' 1.0 0.0) (V2' 0.0 1.0)} -- The group of Orthogonal matrices, using "Multiplicative" for respecting conventions a bit better newtype OrthoMat v s = OrthoMat (SqMat v s) instance (Ring s, Applicative v, Traversable v) => Multiplicative (OrthoMat v s) where one = OrthoMat id OrthoMat m * OrthoMat n = OrthoMat (m . n) instance (Ring s, Applicative v, Traversable v) => Division (OrthoMat v s) where recip (OrthoMat m) = OrthoMat (transpose m)